casa
$Rev:20696$
|
00001 //# Entropy.h: this defines the virtual base class Entropy 00002 //# Copyright (C) 1996,1997,1998,1999,2000 00003 //# Associated Universities, Inc. Washington DC, USA. 00004 //# 00005 //# This library is free software; you can redistribute it and/or modify it 00006 //# under the terms of the GNU Library General Public License as published by 00007 //# the Free Software Foundation; either version 2 of the License, or (at your 00008 //# option) any later version. 00009 //# 00010 //# This library is distributed in the hope that it will be useful, but WITHOUT 00011 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00012 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 00013 //# License for more details. 00014 //# 00015 //# You should have received a copy of the GNU Library General Public License 00016 //# along with this library; if not, write to the Free Software Foundation, 00017 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 00018 //# 00019 //# Correspondence concerning AIPS++ should be addressed as follows: 00020 //# Internet email: aips2-request@nrao.edu. 00021 //# Postal address: AIPS++ Project Office 00022 //# National Radio Astronomy Observatory 00023 //# 520 Edgemont Road 00024 //# Charlottesville, VA 22903-2475 USA 00025 //# 00026 //# $Id$ 00027 00028 #ifndef SYNTHESIS_ENTROPY_H 00029 #define SYNTHESIS_ENTROPY_H 00030 00031 #include <casa/aips.h> 00032 #include <lattices/Lattices/Lattice.h> 00033 #include <casa/Arrays/Matrix.h> 00034 #include <casa/Arrays/Vector.h> 00035 #include <casa/Arrays/Array.h> 00036 #include <casa/BasicSL/String.h> 00037 00038 namespace casa { //# NAMESPACE CASA - BEGIN 00039 00040 //forward declaration 00041 class CEMemModel; 00042 00043 // <summary> base class for entropy functions as used by MEM 00044 // </summary> 00045 00046 // <use visibility=export> 00047 00048 // <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos=""> 00049 // </reviewed> 00050 00051 // <prerequisite> 00052 // <li> CEMemModel 00053 // </prerequisite> 00054 // 00055 // <etymology> 00056 // This class is called Entropy because it encapsulates the required 00057 // functionality of the entropy in the CE MEM algorithm 00058 // </etymology> 00059 // 00060 // <synopsis> 00061 // Provide the generic interface to entropy functions. 00062 // 00063 // We calculate entropy, gradients, and Hessians (diagonal) of the entropy. 00064 // For efficiency reasons, we cannot restrict the methods to these calculations, 00065 // but must also subsume the loops over image pixels in which they are 00066 // used. In this way, the Entropy classes form a tight partnership with 00067 // the MemModel classes, taking over more responcibility than strict 00068 // functional encapsulation requires. 00069 // 00070 // This class heirarchy is used by CEMemModel, which implements 00071 // the Cornwell-Evans Maximum Entropy algorithm. 00072 // 00073 // In the Entropy constructor, we create a pointer to the CEMemModel for 00074 // reference to its Mem image, prior image, and default levels. 00075 // Since each sort of Entropy is a friend of the CEMemModel, it 00076 // has access to its private data. However, we vow here NOT to 00077 // touch it, just to look at it. Could have done read-only access, 00078 // but too lazy. 00079 // 00080 // </synopsis> 00081 // 00082 // <example> 00083 // <srcblock> 00084 // EntropyI myEntropyEngine(myCEMemModel&); 00085 // 00086 // Float theEntropy myEntropyEngine.getEntropy(); 00087 // </srcblock> 00088 // </example> 00089 // 00090 // <motivation> 00091 // This class is needed to encapsulate the methods of different 00092 // functional forms of the entropy, used by Maximum Entropy (MEM) 00093 // deconvolution algorithms. 00094 // </motivation> 00095 // 00096 // 00097 // <todo asof="1998/08/02"> 00098 // <li> Nothing done yet! 00099 // </todo> 00100 00101 00102 // virtual base class 00103 class Entropy 00104 { 00105 public: 00106 00107 // The default constructor is good enough, does nothing. 00108 // the MemImage and Prior image are stored in the MemModel. 00109 Entropy(); 00110 00111 00112 // A virtual destructor may be necessary for use in derived classes. 00113 virtual ~Entropy(); 00114 00115 00116 // calculate the entropy for the whole image 00117 virtual Float formEntropy() = 0; 00118 00119 // calculate the Gradient dot Gradient matrix 00120 virtual void formGDG(Matrix<double> & ) = 0; 00121 00122 // calculate the Gradient dot Gradient matrix, calculate Step 00123 virtual void formGDGStep(Matrix<double> & ) = 0; 00124 00125 // calculate Gradient dot Step 00126 virtual Double formGDS() = 0; 00127 00128 // report the entropy type for a logging message 00129 virtual void entropyType(String &) = 0; 00130 00131 // set the MemModel 00132 void setMemModel(CEMemModel& mmm) { cemem_ptr = &mmm; } 00133 00134 // infoBanner 00135 virtual void infoBanner() = 0; 00136 00137 // infoPerIteration 00138 virtual void infoPerIteration(uInt iteration) = 0; 00139 00140 // are there any constraints on how the Image minimum 00141 // gets relaxed? 00142 virtual Float relaxMin() = 0; 00143 00144 // each entropy type can have its distinct convergence 00145 // criteria 00146 virtual Bool testConvergence() = 0; 00147 00148 protected: 00149 00150 00151 enum GRADTYPE {H=0, C, F, J }; 00152 00153 00154 CEMemModel *cemem_ptr; 00155 00156 Entropy(const Entropy &); 00157 00158 00159 00160 }; 00161 00162 00163 // <summary> Thermodynamic or Information entropy used by MEM 00164 // </summary> 00165 00166 00167 // Thermodynamic or Information entropy 00168 class EntropyI : public Entropy 00169 { 00170 public: 00171 00172 // This default constructor is good enough for me. 00173 EntropyI(); 00174 00175 // destructor 00176 ~EntropyI(); 00177 00178 // calculate the entropy for the whole image 00179 Float formEntropy(); 00180 00181 // calculate the Gradient dot Gradient matrix 00182 void formGDG(Matrix<Double>& ); 00183 00184 // calculate the Gradient dot Gradient matrix, calculate Step 00185 void formGDGStep(Matrix<double> & ); 00186 00187 // calculate Gradient dot Step 00188 Double formGDS(); 00189 00190 // report the entropy type for a logging message 00191 void entropyType(String & str) 00192 { str = "entropy type I (information/thermodynamic)"; } 00193 00194 // infoBanner 00195 void infoBanner(); 00196 00197 // infoIteration 00198 void infoPerIteration(uInt iteration); 00199 00200 // relax image Min 00201 Float relaxMin(); 00202 00203 // each entropy type can have its distinct convergence 00204 // criteria 00205 Bool testConvergence(); 00206 00207 00208 protected: 00209 00210 EntropyI(const EntropyI& ); 00211 EntropyI& operator=(const EntropyI& ); 00212 00213 }; 00214 00215 00216 // <summary> Maximum Emptiness measure used by MEM 00217 // </summary> 00218 00219 // Emptiness measure 00220 class EntropyEmptiness : public Entropy 00221 { 00222 public: 00223 00224 // This default constructor is good enough for me. 00225 EntropyEmptiness(); 00226 00227 // destructor 00228 ~EntropyEmptiness(); 00229 00230 // calculate the entropy for the whole image 00231 Float formEntropy(); 00232 00233 // calculate the Gradient dot Gradient matrix 00234 void formGDG(Matrix<Double>& ); 00235 00236 // calculate the Gradient dot Gradient matrix, calculate Step 00237 void formGDGStep(Matrix<double> & ); 00238 00239 // calculate Gradient dot Step 00240 Double formGDS(); 00241 00242 // report the entropy type for a logging message 00243 void entropyType(String & str) 00244 { str = "entropy type I (information/thermodynamic)"; } 00245 00246 // infoBanner 00247 void infoBanner(); 00248 00249 // infoIteration 00250 void infoPerIteration(uInt iteration); 00251 00252 // relax image Min 00253 Float relaxMin(); 00254 00255 // each entropy type can have its distinct convergence 00256 // criteria 00257 Bool testConvergence(); 00258 00259 00260 protected: 00261 00262 EntropyEmptiness(const EntropyEmptiness& ); 00263 EntropyEmptiness& operator=(const EntropyEmptiness& ); 00264 00265 }; 00266 00267 00268 00269 00270 00271 00272 } //# NAMESPACE CASA - END 00273 00274 #endif