casa
$Rev:20696$
|
00001 //# FFTServer.h: A class with methods for Fast Fourier Transforms 00002 //# Copyright (C) 1994,1995,1996,1997,1999,2003 00003 //# Associated Universities, Inc. Washington DC, USA. 00004 //# 00005 //# This library is free software; you can redistribute it and/or modify it 00006 //# under the terms of the GNU Library General Public License as published by 00007 //# the Free Software Foundation; either version 2 of the License, or (at your 00008 //# option) any later version. 00009 //# 00010 //# This library is distributed in the hope that it will be useful, but WITHOUT 00011 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00012 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 00013 //# License for more details. 00014 //# 00015 //# You should have received a copy of the GNU Library General Public License 00016 //# along with this library; if not, write to the Free Software Foundation, 00017 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 00018 //# 00019 //# Correspondence concerning AIPS++ should be addressed as follows: 00020 //# Internet email: aips2-request@nrao.edu. 00021 //# Postal address: AIPS++ Project Office 00022 //# National Radio Astronomy Observatory 00023 //# 520 Edgemont Road 00024 //# Charlottesville, VA 22903-2475 USA 00025 //# 00026 //# $Id: FFTServer.h 21051 2011-04-20 11:46:29Z gervandiepen $ 00027 00028 #ifndef SCIMATH_FFTSERVER_H 00029 #define SCIMATH_FFTSERVER_H 00030 00031 //# Includes 00032 #include <casa/aips.h> 00033 #include <scimath/Mathematics/FFTW.h> 00034 #include <casa/Arrays/IPosition.h> 00035 #include <casa/Containers/Block.h> 00036 #include <vector> 00037 00038 namespace casa { //# NAMESPACE CASA - BEGIN 00039 00040 //# Forward Declarations 00041 template <class T> class Array; 00042 template <class S> class Matrix; 00043 // <summary>Lists the different types of FFT's that can be done</summary> 00044 // <synopsis>This enumerator is brought out as a separate class because g++ 00045 // currently cannot handle enumerators in a templated class. When it can this 00046 // class will go away and this enumerator moved into the FFTServer 00047 // class</synopsis> 00048 class FFTEnums { 00049 public: 00050 enum TransformType { 00051 // Forward Complex to Complex transforms. 00052 COMPLEX, 00053 // Inverse Complex to Complex transforms. 00054 INVCOMPLEX, 00055 // Real to Complex or Complex to Real transforms. 00056 REALTOCOMPLEX, 00057 // Real to Complex or Complex to Real transforms. 00058 COMPLEXTOREAL, 00059 // Real to Real transforms with symmetric Arrays (not used) 00060 REALSYMMETRIC 00061 }; 00062 }; 00063 00064 // <summary>A class with methods for Fast Fourier Transforms</summary> 00065 00066 // <use visibility=export> 00067 00068 // <reviewed reviewer="wbrouw" date="1997/10/29" tests="tFFTServer"> 00069 // </reviewed> 00070 00071 // <prerequisite> 00072 // <li> Basic concepts of Fast Fourier Transforms. 00073 // <li> <linkto module=Arrays>The Arrays module</linkto> 00074 // </prerequisite> 00075 00076 // <etymology> The FFTServer class, can do Fast Fourier Transforms of 00077 // any length and dimensionality. 00078 // </etymology> 00079 00080 00081 // <synopsis> 00082 00083 // The FFTServer class provides methods for performing n-dimensional Fast 00084 // Fourier Transforms with real and complex Array's of arbitrary size and 00085 // dimensionality. It can do either real to complex, complex to real, or 00086 // complex to complex transforms with the "origin" of the transform either at 00087 // the centre of the Array or at the first element. 00088 00089 // Because the output from a real to complex transform is Hermitian only half 00090 // of the complex result is returned. Similarly with a complex to real 00091 // transform only half of the complex plane is required, the other half is 00092 // implicitly assumed to be the complex conjugate of the supplied half-plane. 00093 // <note role=warning> The complex to real transform does not check that the 00094 // imaginary component of the values where u=0 are zero</note> 00095 00096 // This class can be initialised with a shape that indicates the length of the 00097 // transforms that will be performed, and whether they are going to be 00098 // real<->complex transforms or complex<->complex ones. This initialisation 00099 // sets up a variety of internal buffers and computes factorizations and 00100 // twiddle factors used during the transform. The initialised transform shape 00101 // is always compared with the shape of the supplied arguments when a transform 00102 // is done and the FFTServer class will automatically resize itself if 00103 // necessary. So the default constructor is perfectly safe to use. 00104 00105 // With any transform the output Array must either be the correct shape for the 00106 // desired output or zero length (ie not contain any elements). If it is zero 00107 // length then it will be resized to the correct shape. For a complex->complex 00108 // transform the output Array will be the same shape as the input Array. For a 00109 // real->complex transform the output Array will be the same size as the input 00110 // Array except in the first dimension which will have a length of (nx+2)/2. So 00111 // if nx=7 the output length will be 4 and if nx=8 the output length will be 5, 00112 // on the first axis. nx is the length of the first axis on the <em>real</em> 00113 // input Array and cx (which is used later) is the length of the first axis on 00114 // the <em>complex</em> input Array. 00115 00116 // <strong>For complex to real transforms the output length on the first axis 00117 // is not uniquely defined by the shape of the complex input 00118 // Array</strong>. This class uses the following algorithm to work out the 00119 // length of the first axis on the output Array. 00120 // <ul> 00121 // <li> If the size of the output Array is non-zero then its shape must match 00122 // the size of the input Array except for the first axis. The length of the 00123 // first axis must either be 2*cx-2 or 2*cx-1 and this determines the length of 00124 // the transform on the first axis. 00125 // <li> If the size of the output Array is zero then scan the imaginary 00126 // components of the values at the end of the first axis on the input Array (ie 00127 // at <src>[cx-1,....]</src> If any of these are non-zero the output Array 00128 // will have an odd length. 00129 // <li> Otherwise if all the imaginary components described above are zero then 00130 // look at the current size of the FFTServer object (either defined at 00131 // construction time or with the resize function). If it matches the size of 00132 // the input Array except for the first axis and if the length on this axis is 00133 // either 2*cx-2 or 2*cx-1 then use that to determine the size of the output 00134 // Array. 00135 // <li> Otherwise assume the output Array will an even length of 2*cx-2 on its 00136 // first axis. 00137 // </ul> 00138 00139 // This class does transforms using the widely used FORTRAN fftpack 00140 // package or the highly optimized FFTW package (to be chosen at build time). 00141 // <br> 00142 // <em> P.N. Swarztrauber, Vectorizing the FFTs, in Parallel Computations 00143 // (G. Rodrigue, ed.), Academic Press, 1982, pp. 51--83. </em><br> 00144 // The fftpack package only does one dimensional transforms and this class 00145 // decomposes multi-dimensional transforms into a series of 1-dimensional ones. 00146 // <br>If at build time it is chosen to use FFTW in a multi-threaded way, 00147 // it will try to use as many cores as possible. 00148 00149 // In this class a forward transform is defined as one that goes from the real 00150 // to the complex (or the time to frequency) domain. In a forward transform the 00151 // sign of the exponent is negative and no scaling is done on the output. The 00152 // backward transform goes from the complex to the real (or the frequency to 00153 // the time) domain. The sign of the exponent is positive and the result is 00154 // always scaled by 1/N were N is the total number of elements in the Array. 00155 00156 // The origin of the transform is defined as the point where setting only that 00157 // element to one, and then doing a forward transform results in an Array that 00158 // is all one. The <src>fft</src> member functions in this class all assume 00159 // that the origin of the Transform is at the centre of the Array ie. at 00160 // <src>[nx/2,ny/2,...]</src> were the indexing begins at zero. Because the 00161 // fftpack software assumes the origin of the transform is at the first element 00162 // ie.,<src>[0,0,...]</src> this class flips the data in the Array around to 00163 // compensate. For fftpack this flipping takes about one 20% of the total 00164 // transform time, while for FFTW it can easily exceed the transform time. 00165 // Flipping can be avoided by using the <src>fft0</src> member 00166 // functions which do not flip the data. 00167 00168 // Some of the member functions in this class scramble the input Array, 00169 // possibly by flipping the quandrants of the data although this is not 00170 // guaranteed. Modification of the input Array can be avoided, at the expense 00171 // of copying the data to temporary storage, by either: 00172 // <ul> <li> Ensuring the input Array is a const Array. 00173 // <li> Setting the constInput Flag to True. 00174 // </ul> 00175 // The latter option is provided to avoid users having to cast non-const 00176 // Arrays to const ones in order to prevent there input Array from being 00177 // scrambled. 00178 00179 // <note role=warning> This class assumes that a Complex array is stored as 00180 // pairs of floating point numbers, with no intervening gaps, and with the real 00181 // component first ie., <src>[re0,im0,re1,im1, ...]</src>. This means that the 00182 // following type casts work, 00183 // <srcblock> 00184 // S * complexPtr; 00185 // T * realPtr = (T * ) complexPtr; 00186 // </srcblock> 00187 // and allow a Complex number to be accessed as a pair of real numbers. If this 00188 // assumption is bad then real Arrays will have to generated by copying the 00189 // complex ones. Ultimately this assumption about Complex<->Real Array 00190 // conversion should be put somewhere central like Array2Math.cc. 00191 // </note> 00192 // </synopsis> 00193 00194 // <templating arg=T> 00195 // <li> The T argument must be of type Float or Double. These are the only 00196 // possible instantiations of this class. 00197 // </templating> 00198 00199 // <templating arg=S> 00200 // <li> The S argument must be of type Complex, if T is Float, or DComplex, if T is 00201 // Double. These are the only possible instantiations of this class. 00202 // </templating> 00203 // 00204 // <example> 00205 // Do a real to complex Transform of a 1-Dimensional Vector. The following 00206 // example can trivially be extended to any number of dimensions. 00207 // <srcblock> 00208 // FFTServer<Float,Complex> server; 00209 // Vector<Float> input(32); 00210 // Vector<Complex> output(17); 00211 // input = 0.0f; 00212 // input(16) = 1.0f; 00213 // cout << "Input:" << input << endl; 00214 // server.fft(output, input); 00215 // cout << "Output:" << output << endl; 00216 // </srcblock> 00217 // </example> 00218 // 00219 // <thrown> 00220 // <li> AipsError: If the input and output Array have bad or incompatible 00221 // shapes. See the individual function descriptions for what Array shapes are 00222 // required. 00223 // </thrown> 00224 // 00225 // <todo asof="1997/10/22"> 00226 // <li> The time taken to flip the Array can be reduced, if all the Array 00227 // dimensions are even, by pre-multiplying the every other element on the 00228 // input Array by -1. Then no flipping needs to be done on the output Array. 00229 // </todo> 00230 00231 template<class T, class S> class FFTServer 00232 { 00233 public: 00234 00235 // The default constructor. The server will automatically resize to do 00236 // transforms of the appropriate length when necessary. 00237 FFTServer(); 00238 00239 // Initialise the server to do transforms on Arrays of the specified 00240 // shape. The server will, however, resize to do transforms of other lengths 00241 // if necessary. See the resize function for a description of the 00242 // TransformType enumerator. 00243 FFTServer(const IPosition & fftSize, 00244 const FFTEnums::TransformType transformType 00245 = FFTEnums::REALTOCOMPLEX); 00246 00247 // copy constructor. The copied server is initialised to do transforms of the 00248 // same length as the other server. Uses copy (and not reference) semantics 00249 // so that changing the transform length of one server does not affect the 00250 // other server. 00251 FFTServer(const FFTServer<T,S> & other); 00252 00253 // destructor 00254 ~FFTServer(); 00255 00256 // The assignment operator which does the same thing as the copy 00257 // constructor. 00258 FFTServer<T,S> & operator=(const FFTServer<T,S> & other); 00259 00260 // Modify the FFTServer object to do transforms of the supplied shape. The 00261 // amount of internal storage, and the initialisation, depends on the type of 00262 // transform that will be done. The transform type is specified with the 00263 // TransformTypes enumerator. Currently there is no difference in 00264 // initialisation for the COMPLEXTOREAL and REALTOCOMPLEX transforms. The 00265 // shape argument is the shape of the real array (or complex one if complex 00266 // to complex transforms are being done). In general it is not necessary to 00267 // use this function as all the fft & fft0 functions will automatically 00268 // resize the server, if necessary, to match their input arguments. 00269 void resize(const IPosition & fftSize, 00270 const FFTEnums::TransformType transformType 00271 = FFTEnums::REALTOCOMPLEX); 00272 00273 // Real to complex fft. The origin of the transform is in the centre of the 00274 // Array. Because of the Hermitian property the output Array only contains 00275 // half of the complex result. The output Array must either have no elements 00276 // or be a size that is appropriate to the input Array size, 00277 // ie. <src>shape = [(nx+2)/2, ny, nz,...]</src>. Otherwise an AipsError is 00278 // thrown. See the synopsis for a description of the constInput flag. 00279 // <group> 00280 void fft(Array<S> & cResult, Array<T> & rData, const Bool constInput=False); 00281 void fft(Array<S> & cResult, const Array<T> & rData); 00282 // </group> 00283 00284 // Complex to real fft. The origin of the transform is in the centre of the 00285 // Array. Because of the Hermitian property the input Array only contains 00286 // half of the complex values. The output Array must either have no elements, 00287 // or be a size that is appropriate to the input Array size ie.,<br> 00288 // <src>shape = [2*cx-2, cy, cz,...]</src> or <br> 00289 // <src>shape = [2*cx-1, cy, cz,...]</src>. <br> 00290 // Otherwise an AipsError is thrown. See the description in the synopsis for 00291 // the algorithm used to choose between the two possible output shapes and a 00292 // description of the constInput Flag. 00293 // <group> 00294 void fft(Array<T> & rResult, Array<S> & cData, const Bool constInput=False); 00295 void fft(Array<T> & rResult, const Array<S> & cData); 00296 // </group> 00297 00298 // Complex to complex in-place fft. The origin of the transform is in the 00299 // centre of the Array. The direction of the transform is controlled by the 00300 // toFrequency variable. If True then a forward, or time to frequency, 00301 // transform is performed. If False a backward or frequency to time transform 00302 // is done. Scaling is always done on the backward transform. 00303 void fft(Array<S> & cValues, const Bool toFrequency=True); 00304 00305 // Complex to complex fft. The origin of the transform is in the centre of 00306 // the Array. The direction of the transform is controlled by the toFrequency 00307 // variable. If True then a forward, or time to frequency, transform is 00308 // performed. If False a backward or frequency to time transform is 00309 // done. Scaling is always done on the backward transform. The output Array 00310 // must either either contain no elements or be the same as the input Array, 00311 // ie. <src>shape = [cx, cy, cz,...]</src>. Otherwise an AipsError is 00312 // thrown. 00313 void fft(Array<S> & cResult, const Array<S> & cData, 00314 const Bool toFrequency=True); 00315 00316 // The <src>fft0</src> functions are equivalent to the <src>fft</src> 00317 // functions described above except that the origin of the transform is the 00318 // first element of the Array, ie. [0,0,0...], rather than the centre 00319 // element, ie [nx/2, ny/2, nz/2, ...]. As the underlying functions 00320 // assume that the origin of the transform is the first element these 00321 // routines are in general faster than the equivalent ones with the origin 00322 // at the centre of the Array. 00323 // <group> 00324 void fft0(Array<S> & cResult, Array<T> & rData, const Bool constInput=False); 00325 void fft0(Array<S> & cResult, const Array<T> & rData); 00326 void fft0(Array<T> & rResult, Array<S> & cData, const Bool constInput=False); 00327 void fft0(Array<T> & rResult, const Array<S> & cData); 00328 void fft0(Array<S> & cValues, const Bool toFrequency=True); 00329 void fft0(Array<S> & cResult, const Array<S> & cData, 00330 const Bool toFrequency=True); 00331 //# void fft0(Array<T> & rValues, const Bool toFrequency=True); 00332 00333 // </group> 00334 //# Flips the quadrants in a complex Array so that the point at 00335 //# cData.shape()/2 moves to the origin. This moves, for example, the point 00336 //# at [8,3] to the origin ([0,0]) in an array of shape [16,7]. Usually two 00337 //# flips will restore an Array to its original state. But for Array's 00338 //# where one or more dimension is an odd length two flips do NOT restore 00339 //# the data to its original state. So the when toZero=False this routine 00340 //# does an unflip operation (ie moves the data at [0,0] to the centre) and 00341 //# restores the data to its original state for odd length arrays. When 00342 //# passed a Hermitian Array where half the complex plane is implicit (eg as 00343 //# produced by a real->complex Transform) it is not necessary to flip the 00344 //# first dimension of the Array. In this case the isHermitian flag should 00345 //# be set to True. For complex<->complex transforms this should be False. 00346 // <group> 00347 void flip(Array<T> & rData, const Bool toZero, const Bool isHermitian); 00348 void flip(Array<S> & cData, const Bool toZero, const Bool isHermitian); 00349 // </group> 00350 00351 // N-D in-place complex->complex FFT shift (FFT - phase-mult - inverse FFT) 00352 // If toFrequency is true, the first FFT will be from time to frequency. 00353 // relshift is the freq shift normalised to the bandwidth. 00354 // Only transform over selected dimension. Iterate over the others. 00355 void fftshift(Array<S> & cValues, const uInt& whichAxis, 00356 const Double& relshift, const Bool toFrequency=True); 00357 00358 // N-D complex->complex FFT shift (FFT - phase-mult - inverse FFT) 00359 // with flagging. 00360 // If toFrequency is true, the first FFT will be from time to frequency. 00361 // relshift is the freq shift normalised to the bandwidth. 00362 // Only transform over selected dimension. Iterate over the others. 00363 void fftshift(Array<S> & outValues, Array<Bool> & outFlags, 00364 const Array<S> & cValues, const Array<Bool>& inFlags, 00365 const uInt& whichAxis, 00366 const Double& relshift, 00367 const Bool goodIsTrue=False, 00368 const Bool toFrequency=True); 00369 00370 // N-D real->real FFT shift (FFT to complex - phase-mult - inverse FFT) 00371 // with flagging. 00372 // relshift is the freq shift normalised to the bandwidth. 00373 // Only transform over selected dimension. Iterate over the others. 00374 void fftshift(Array<T> & outValues, Array<Bool> & outFlags, 00375 const Array<T> & rValues, const Array<Bool>& inFlags, 00376 const uInt& whichAxis, 00377 const Double& relshift, 00378 const Bool goodIsTrue=False); 00379 00380 private: 00381 //# finds the shape of the output array when doing complex->real transforms 00382 IPosition determineShape(const IPosition & rShape, const Array<S> & cData); 00383 00384 //# Data members. 00385 // The size of the last FFT done by this object 00386 IPosition itsSize; 00387 // Whether the last FFT was complex<->complex or not 00388 FFTEnums::TransformType itsTransformType; 00389 //# twiddle factors and factorisations used by fftpack 00390 PtrBlock<Block<T> *> itsWork; 00391 // buffer for copying non-contigious arrays to contigious ones. This is done 00392 // so that the FFT's have a better chance of fitting into cache and hence 00393 // going faster. 00394 // This buffer is also used as temporary storage when flipping the data. 00395 Block<S> itsBuffer; 00396 // FFTW specific members. Do not harm if FFTPack is used. 00397 FFTW itsFFTW; 00398 std::vector<T> itsWorkIn; 00399 std::vector<S> itsWorkOut; 00400 std::vector<S> itsWorkC2C; 00401 }; 00402 00403 00404 } //# NAMESPACE CASA - END 00405 00406 //# Do NOT include the .tcc file here like done for other templated classes. 00407 //# The instantiations are done explicitly. 00408 //# In this way the HAVE_FFTW ifdef is only used in .cc files and does 00409 //# not appear in headers, so other packages using FFTServer do not need 00410 //# to (un)set HAVE_FFTW. 00411 00412 #endif