casa
$Rev:20696$
|
00001 //# IPLatConvEquation.h: this defines IPLatConvEquation 00002 //# Copyright (C) 1996,1997,1998,1999,2000 00003 //# Associated Universities, Inc. Washington DC, USA. 00004 //# 00005 //# This library is free software; you can redistribute it and/or modify it 00006 //# under the terms of the GNU Library General Public License as published by 00007 //# the Free Software Foundation; either version 2 of the License, or (at your 00008 //# option) any later version. 00009 //# 00010 //# This library is distributed in the hope that it will be useful, but WITHOUT 00011 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00012 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 00013 //# License for more details. 00014 //# 00015 //# You should have received a copy of the GNU Library General Public License 00016 //# along with this library; if not, write to the Free Software Foundation, 00017 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 00018 //# 00019 //# Correspondence concerning AIPS++ should be addressed as follows: 00020 //# Internet email: aips2-request@nrao.edu. 00021 //# Postal address: AIPS++ Project Office 00022 //# National Radio Astronomy Observatory 00023 //# 520 Edgemont Road 00024 //# Charlottesville, VA 22903-2475 USA 00025 //# 00026 //# 00027 //# $Id$ 00028 00029 #ifndef SYNTHESIS_IPLATCONVEQUATION_H 00030 #define SYNTHESIS_IPLATCONVEQUATION_H 00031 00032 00033 #include <casa/aips.h> 00034 #include <synthesis/MeasurementEquations/LatConvEquation.h> 00035 #include <lattices/Lattices/LatticeConvolver.h> 00036 #include <lattices/Lattices/Lattice.h> 00037 #include <casa/Arrays/IPosition.h> 00038 #include <casa/Arrays/Array.h> 00039 00040 namespace casa { //# NAMESPACE CASA - BEGIN 00041 00042 template <class Domain> class LinearModel; 00043 00044 00045 // <summary> Implements the image plane lattice convolution equation </summary> 00046 00047 // <use visibility=local> 00048 00049 // <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos=""> 00050 // </reviewed> 00051 00052 // <prerequisite> 00053 // <li> <linkto class="LatConvEquation">LatConvEquation</linkto> 00054 // (or similar classes) 00055 // </prerequisite> 00056 // 00057 // <etymology> 00058 // This class implements image plane (ie, single dish) convolution equation 00059 // within the LinearEquation framework, using Lattices. 00060 // </etymology> 00061 // 00062 // <synopsis> 00063 // This class is used in conjunction with classes like HogbomCleanModel to 00064 // implement deconvolution algorithms. This class contains the point spread 00065 // function (psf) and the convolved data (dirty image), and is able to 00066 // convolve a supplied model with the psf to produce a predicted output 00067 // (using the evaluate() function), or to subtract the convolved data and 00068 // produce a residual (using the residual() function). 00069 // 00070 // See the documentation for 00071 // <linkto class=HogbomCleanModel>HogbomCleanModel</linkto> 00072 // for an example of how this class can be used to perform deconvolution. 00073 // 00074 // This class also contains specialised functions (like the version of 00075 // evaluate() for a point source model) that speed up the calculation of the 00076 // convolution. This specialised version of evaluate() does not need to 00077 // actually perform the convolution and instead returns a suitable part of 00078 // the psf (zero padded if necessary). When this function is called this 00079 // class will get the psf from the convolver and cache it, on the assumption 00080 // that many evaluations of this function will be requested (as occurs in 00081 // Clean algorithms). 00082 // 00083 // The size and shape of the psf and the supplied model may be different. The 00084 // only restriction is that the dimension of the psf must be less than or 00085 // equal to the dimension of the model. If the dimension of the 00086 // model is larger than the dimension of the psf then the convolution 00087 // will be repeated along the slowest moving (last) axis. The dirty image 00088 // and the supplied model must be the same size and shape. 00089 // 00090 // 00091 // </synopsis> 00092 // 00093 // <example> 00094 // <srcblock> 00095 // PagedArray<Float> psf(2,4,4), dirty(2,20,20), model(2,20,20); 00096 // .... put some meaningful values into these Lattices.... 00097 // // create a convolution equation, and a PagedArray model 00098 // LatConvEquation convEqn(psf, dirty); 00099 // LinearModel< Lattice<Float> > myModel(model); 00100 // // now calculate the convolution of the model and the psf 00101 // PagedArray<Float> prediction; 00102 // convEqn.evaluate(myModel, prediction); 00103 // // and calculate the difference between the predicted and actual convolution 00104 // PagedArray<Float> residual; 00105 // convEqn.residual(mymodel, residual) 00106 // </srcblock> 00107 // </example> 00108 // 00109 // <motivation> 00110 // This class was designed with deconvolution in mind. 00111 // </motivation> 00112 // 00113 // <todo asof="1990/05/03"> 00114 // <li> Reinstate the evaluate() method with position argument. 00115 // <li> Fix up copies and references with Ralph Marson's help 00116 // <li> This class is not templated. If necessary I would use templating 00117 // to produce a Double Precision Version. 00118 // </todo> 00119 00120 class IPLatConvEquation: 00121 public LatConvEquation 00122 { 00123 public: 00124 00125 // Construct the LatConvEquation setting the psf and measured data 00126 IPLatConvEquation(Lattice<Float> & psf, 00127 Lattice<Float> & dirtyImage); 00128 00129 // Somewhere I read that a destructor should alway be defined even if it 00130 // does nothing (as this one does). 00131 virtual ~IPLatConvEquation(); 00132 00133 // Calculate the convolution of the model (supplied by the LinearModel 00134 // class) and the psf and the difference between this and the supplied 00135 // (presumably measured) convolution. 00136 virtual Bool residual(Lattice<Float> & result, 00137 const LinearModel< Lattice<Float> > & model); 00138 00139 // Calculate the convolution of the model (supplied by the LinearModel 00140 // class) and the psf and the difference between this and the supplied 00141 // (presumably measured) convolution. Also return chisq. 00142 virtual Bool residual(Lattice<Float> & result, Float & chisq, 00143 const LinearModel< Lattice<Float> > & model); 00144 00145 private: 00146 00147 // Don't use this one, due to the Lattice<Float> & 00148 IPLatConvEquation(); 00149 00150 // Factor by which we normalize the PSF for the second convolution 00151 Float itsQ; 00152 00153 }; 00154 00155 00156 } //# NAMESPACE CASA - END 00157 00158 #endif