casa
$Rev:20696$
|
00001 //# Lattice.h: Lattice is an abstract base class for array-like classes 00002 //# Copyright (C) 1994,1995,1996,1997,1998,1999,2000,2003 00003 //# Associated Universities, Inc. Washington DC, USA. 00004 //# 00005 //# This library is free software; you can redistribute it and/or modify it 00006 //# under the terms of the GNU Library General Public License as published by 00007 //# the Free Software Foundation; either version 2 of the License, or (at your 00008 //# option) any later version. 00009 //# 00010 //# This library is distributed in the hope that it will be useful, but WITHOUT 00011 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00012 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 00013 //# License for more details. 00014 //# 00015 //# You should have received a copy of the GNU Library General Public License 00016 //# along with this library; if not, write to the Free Software Foundation, 00017 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 00018 //# 00019 //# Correspondence concerning AIPS++ should be addressed as follows: 00020 //# Internet email: aips2-request@nrao.edu. 00021 //# Postal address: AIPS++ Project Office 00022 //# National Radio Astronomy Observatory 00023 //# 520 Edgemont Road 00024 //# Charlottesville, VA 22903-2475 USA 00025 //# 00026 //# $Id: Lattice.h 20739 2009-09-29 01:15:15Z Malte.Marquarding $ 00027 00028 #ifndef LATTICES_LATTICE_H 00029 #define LATTICES_LATTICE_H 00030 00031 00032 //# Includes 00033 #include <lattices/Lattices/LatticeBase.h> 00034 #include <casa/Arrays/Slicer.h> 00035 00036 namespace casa { //# NAMESPACE CASA - BEGIN 00037 00038 //# Forward Declarations 00039 class IPosition; 00040 class LatticeNavigator; 00041 template <class T> class Array; 00042 template <class T> class COWPtr; 00043 template <class Domain, class Range> class Functional; 00044 template <class T> class LatticeIterInterface; 00045 00046 00047 // <summary> 00048 // A templated, abstract base class for array-like objects. 00049 // </summary> 00050 00051 // <use visibility=export> 00052 00053 // <reviewed reviewer="Peter Barnes" date="1999/10/30" tests="tArrayLattice.cc" demos="dLattice.cc"> 00054 // </reviewed> 00055 00056 // <prerequisite> 00057 // <li> <linkto class="IPosition"> IPosition </linkto> 00058 // <li> <linkto class="Array"> Array </linkto> 00059 // <li> <linkto class="LatticeBase"> LatticeBase </linkto> 00060 // <li> Abstract Base class Inheritance - try "Advanced C++" by James 00061 // O. Coplien, Ch. 5. 00062 // </prerequisite> 00063 00064 // <etymology> 00065 // Lattice: "A regular, periodic configuration of points, particles, 00066 // or objects, throughout an area of a space..." (American Heritage Directory) 00067 // This definition matches our own: an n-dimensional arrangement of items, 00068 // on regular orthogonal axes. 00069 // </etymology> 00070 00071 // <synopsis> 00072 // This pure abstract base class defines the operations which may be performed 00073 // on any concrete class derived from it. It has only a few non-pure virtual 00074 // member functions. 00075 // The fundamental contribution of this class, therefore, is that it 00076 // defines the operations derived classes must provide: 00077 // <ul> 00078 // <li> how to extract a "slice" (or sub-array, or subsection) from 00079 // a Lattice. 00080 // <li> how to copy a slice in. 00081 // <li> how to get and put a single element 00082 // <li> how to apply a function to all elements 00083 // <li> various shape related functions. 00084 // </ul> 00085 // The base class <linkto class=LatticeBase>LatticeBase</linkto> contains 00086 // several functions not dependent on the template parameter. 00087 // <note role=tip> Lattices always have a zero origin. </note> 00088 // </synopsis> 00089 00090 // <example> 00091 // Because Lattice is an abstract base class, an actual instance of this 00092 // class cannot be constructed. However the interface it defines can be used 00093 // inside a function. This is always recommended as it allows functions 00094 // which have Lattices as arguments to work for any derived class. 00095 // <p> 00096 // I will give a few examples here and then refer the reader to the 00097 // <linkto class="ArrayLattice">ArrayLattice</linkto> class (a memory resident 00098 // Lattice) and the <linkto class="PagedArray">PagedArray</linkto> class (a 00099 // disk based Lattice) which contain further examples with concrete 00100 // classes (rather than an abstract one). All the examples shown below are used 00101 // in the <src>dLattice.cc</src> demo program. 00102 // 00103 // <h4>Example 1:</h4> 00104 // This example calculates the mean of the Lattice. Because Lattices can be too 00105 // large to fit into physical memory it is not good enough to simply use 00106 // <src>getSlice</src> to read all the elements into an Array. Instead the 00107 // Lattice is accessed in chunks which can fit into memory (the size is 00108 // determined by the <src>advisedMaxPixels</src> and <src>niceCursorShape</src> 00109 // functions). The <src>LatticeIterator::cursor()</src> function then returns 00110 // each of these chunks as an Array and the standard Array based functions are 00111 // used to calculate the mean on each of these chunks. Functions like this one 00112 // are the recommended way to access Lattices as the 00113 // <linkto class="LatticeIterator">LatticeIterator</linkto> will correctly 00114 // setup any required caches. 00115 // 00116 // <srcblock> 00117 // Complex latMean(const Lattice<Complex>& lat) { 00118 // const uInt cursorSize = lat.advisedMaxPixels(); 00119 // const IPosition cursorShape = lat.niceCursorShape(cursorSize); 00120 // const IPosition latticeShape = lat.shape(); 00121 // Complex currentSum = 0.0f; 00122 // size_t nPixels = 0u; 00123 // RO_LatticeIterator<Complex> iter(lat, 00124 // LatticeStepper(latticeShape, cursorShape)); 00125 // for (iter.reset(); !iter.atEnd(); iter++){ 00126 // currentSum += sum(iter.cursor()); 00127 // nPixels += iter.cursor().nelements(); 00128 // } 00129 // return currentSum/nPixels; 00130 // } 00131 // </srcblock> 00132 // 00133 // <h4>Example 2:</h4> 00134 // Sometimes it will be neccesary to access slices of a Lattice in a nearly 00135 // random way. Often this can be done using the subSection commands in the 00136 // <linkto class="LatticeStepper">LatticeStepper</linkto> class. But it is also 00137 // possible to use the getSlice and putSlice functions. The following example 00138 // does a two-dimensional Real to Complex Fourier transform. This example is 00139 // restricted to four-dimensional Arrays (unlike the previous example) and does 00140 // not set up any caches (caching is currently only used with PagedArrays). So 00141 // only use getSlice and putSlice when things cannot be done using 00142 // LatticeIterators. 00143 // 00144 // <srcblock> 00145 // void FFT2DReal2Complex(Lattice<Complex>& result, 00146 // const Lattice<Float>& input){ 00147 // AlwaysAssert(input.ndim() == 4, AipsError); 00148 // const IPosition shape = input.shape(); 00149 // const uInt nx = shape(0); 00150 // AlwaysAssert (nx > 1, AipsError); 00151 // const uInt ny = shape(1); 00152 // AlwaysAssert (ny > 1, AipsError); 00153 // const uInt npol = shape(2); 00154 // const uInt nchan = shape(3); 00155 // const IPosition resultShape = result.shape(); 00156 // AlwaysAssert(resultShape.nelements() == 4, AipsError); 00157 // AlwaysAssert(resultShape(3) == nchan, AipsError); 00158 // AlwaysAssert(resultShape(2) == npol, AipsError); 00159 // AlwaysAssert(resultShape(1) == ny, AipsError); 00160 // AlwaysAssert(resultShape(0) == nx/2 + 1, AipsError); 00161 // 00162 // const IPosition inputSliceShape(4,nx,ny,1,1); 00163 // const IPosition resultSliceShape(4,nx/2+1,ny,1,1); 00164 // COWPtr<Array<Float> > 00165 // inputArrPtr(new Array<Float>(inputSliceShape.nonDegenerate())); 00166 // Array<Complex> resultArray(resultSliceShape.nonDegenerate()); 00167 // FFTServer<Float, Complex> FFT2D(inputSliceShape.nonDegenerate()); 00168 // 00169 // IPosition start(4,0); 00170 // Bool isARef; 00171 // for (uInt c = 0; c < nchan; c++){ 00172 // for (uInt p = 0; p < npol; p++){ 00173 // isARef = input.getSlice(inputArrPtr, 00174 // Slicer(start,inputSliceShape), True); 00175 // FFT2D.fft(resultArray, *inputArrPtr); 00176 // result.putSlice(resultArray, start); 00177 // start(2) += 1; 00178 // } 00179 // start(2) = 0; 00180 // start(3) += 1; 00181 // } 00182 // } 00183 // </srcblock> 00184 // Note that the <linkto class=LatticeFFT>LatticeFFT</linkto> class 00185 // offers a nice way to do lattice based FFTs. 00186 // 00187 // <h4>Example 3:</h4> 00188 // Occasionally you may want to access a few elements of a Lattice without 00189 // all the difficulty involved in setting up Iterators or calling getSlice 00190 // and putSlice. This is demonstrated in the example below. 00191 // Setting a single element can be done with the <src>putAt</src> function, 00192 // while getting a single element can be done with the parenthesis operator. 00193 // Using these functions to access many elements of a Lattice is not 00194 // recommended as this is the slowest access method. 00195 // 00196 // In this example an ideal point spread function will be inserted into an 00197 // empty Lattice. As with the previous examples all the action occurs 00198 // inside a function because Lattice is an interface (abstract) class. 00199 // 00200 // <srcblock> 00201 // void makePsf(Lattice<Float>& psf) { 00202 // const IPosition centrePos = psf.shape()/2; 00203 // psf.set(0.0f); // this sets all the elements to zero 00204 // // As it uses a LatticeIterator it is efficient 00205 // psf.putAt (1, centrePos); // This sets just the centre element to one 00206 // AlwaysAssert(near(psf(centrePos), 1.0f, 1E-6), AipsError); 00207 // AlwaysAssert(near(psf(centrePos*0), 0.0f, 1E-6), AipsError); 00208 // } 00209 // </srcblock> 00210 // </example> 00211 00212 // <motivation> 00213 // Creating an abstract base class which provides a common interface between 00214 // memory and disk based arrays has a number of advantages. 00215 // <ul> 00216 // <li> It allows functions common to all arrays to be written independent 00217 // of the way the data is stored. This is illustrated in the three examples 00218 // above. 00219 // <li> It reduces the learning curve for new users who only have to become 00220 // familiar with one interface (ie. Lattice) rather than distinct interfaces 00221 // for different array types. 00222 // </ul> 00223 // </motivation> 00224 00225 // <todo asof="1996/07/01"> 00226 // <li> Make PagedArray cache functions virtual in this base class. 00227 // </todo> 00228 00229 00230 template <class T> class Lattice : public LatticeBase 00231 { 00232 public: 00233 // a virtual destructor is needed so that it will use the actual destructor 00234 // in the derived class 00235 virtual ~Lattice(); 00236 00237 // Make a copy of the derived object (reference semantics). 00238 virtual Lattice<T>* clone() const = 0; 00239 00240 // Get the data type of the lattice. 00241 virtual DataType dataType() const; 00242 00243 // Return the value of the single element located at the argument 00244 // IPosition. 00245 // <br> The default implementation uses getSlice. 00246 // <group> 00247 T operator() (const IPosition& where) const; 00248 virtual T getAt (const IPosition& where) const; 00249 // </group> 00250 00251 // Put the value of a single element. 00252 // <br> The default implementation uses putSlice. 00253 virtual void putAt (const T& value, const IPosition& where); 00254 00255 // Functions which extract an Array of values from a Lattice. All the 00256 // IPosition arguments must have the same number of axes as the underlying 00257 // Lattice, otherwise, an exception is thrown. <br> 00258 // The parameters are: 00259 // <ul> 00260 // <li> buffer: a <src>COWPtr<Array<T>></src> or an 00261 // <src>Array<T></src>. See example 2 above for an example. 00262 // <li> start: The starting position (or Bottom Left Corner), within 00263 // the Lattice, of the data to be extracted. 00264 // <li> shape: The shape of the data to be extracted. This is not a 00265 // position within the Lattice but the actual shape the buffer will 00266 // have after this function is called. This argument added 00267 // to the "start" argument should be the "Top Right Corner". 00268 // <li> stride: The increment for each axis. A stride of 00269 // one will return every data element, a stride of two will return 00270 // every other element. The IPosition elements may be different for 00271 // each respective axis. Thus, a stride of IPosition(3,1,2,3) says: 00272 // fill the buffer with every element whose position has a first 00273 // index between start(0) and start(0)+shape(0), a second index 00274 // which is every other element between start(1) and 00275 // (start(1)+shape(1))*2, and a third index of every third element 00276 // between start(2) and (start(2)+shape(2))*3. 00277 // <li> section: Another way of specifying the start, shape and stride 00278 // <li> removeDegenerateAxes: a Bool which dictates whether to remove 00279 // "empty" axis created in buffer. (e.g. extracting an n-dimensional 00280 // from an (n+1)-dimensional will fill 'buffer' with an array that 00281 // has a degenerate axis (i.e. one axis will have a length = 1.) 00282 // Setting removeDegenerateAxes = True will return a buffer with 00283 // a shape that doesn't reflect these superfluous axes.) 00284 // </ul> 00285 // 00286 // The derived implementations of these functions return 00287 // 'True' if "buffer" is a reference to Lattice data and 'False' if it 00288 // is a copy. 00289 // <group> 00290 Bool get (COWPtr<Array<T> >& buffer, 00291 Bool removeDegenerateAxes=False) const; 00292 Bool getSlice (COWPtr<Array<T> >& buffer, const Slicer& section, 00293 Bool removeDegenerateAxes=False) const; 00294 Bool getSlice (COWPtr<Array<T> >& buffer, const IPosition& start, 00295 const IPosition& shape, 00296 Bool removeDegenerateAxes=False) const; 00297 Bool getSlice (COWPtr<Array<T> >& buffer, const IPosition& start, 00298 const IPosition& shape, const IPosition& stride, 00299 Bool removeDegenerateAxes=False) const; 00300 Bool get (Array<T>& buffer, 00301 Bool removeDegenerateAxes=False); 00302 Bool getSlice (Array<T>& buffer, const Slicer& section, 00303 Bool removeDegenerateAxes=False); 00304 Bool getSlice (Array<T>& buffer, const IPosition& start, 00305 const IPosition& shape, 00306 Bool removeDegenerateAxes=False); 00307 Bool getSlice (Array<T>& buffer, const IPosition& start, 00308 const IPosition& shape, const IPosition& stride, 00309 Bool removeDegenerateAxes=False); 00310 Array<T> get (Bool removeDegenerateAxes=False) const; 00311 Array<T> getSlice (const Slicer& section, 00312 Bool removeDegenerateAxes=False) const; 00313 Array<T> getSlice (const IPosition& start, 00314 const IPosition& shape, 00315 Bool removeDegenerateAxes=False) const; 00316 Array<T> getSlice (const IPosition& start, 00317 const IPosition& shape, const IPosition& stride, 00318 Bool removeDegenerateAxes=False) const; 00319 // </group> 00320 00321 // A function which places an Array of values within this instance of the 00322 // Lattice at the location specified by the IPosition "where", incrementing 00323 // by "stride". All of the IPosition arguments must be of the same 00324 // dimensionality as the Lattice. The sourceBuffer array may (and probably 00325 // will) have less axes than the Lattice. The stride defaults to one if 00326 // not specified. 00327 // <group> 00328 void putSlice (const Array<T>& sourceBuffer, const IPosition& where, 00329 const IPosition& stride) 00330 { doPutSlice (sourceBuffer, where, stride); } 00331 void putSlice (const Array<T>& sourceBuffer, const IPosition& where); 00332 void put (const Array<T>& sourceBuffer); 00333 00334 // </group> 00335 00336 // Set all elements in the Lattice to the given value. 00337 virtual void set (const T& value); 00338 00339 // Replace every element, x, of the Lattice with the result of f(x). You 00340 // must pass in the address of the function -- so the function must be 00341 // declared and defined in the scope of your program. All versions of 00342 // apply require a function that accepts a single argument of type T (the 00343 // Lattice template type) and return a result of the same type. The first 00344 // apply expects a function with an argument passed by value; the second 00345 // expects the argument to be passed by const reference; the third 00346 // requires an instance of the class <src>Functional<T,T></src>. The 00347 // first form ought to run faster for the built-in types, which may be an 00348 // issue for large Lattices stored in memory, where disk access is not an 00349 // issue. 00350 // <group> 00351 virtual void apply (T (*function)(T)); 00352 virtual void apply (T (*function)(const T&)); 00353 virtual void apply (const Functional<T,T>& function); 00354 // </group> 00355 00356 // Add, subtract, multiple, or divide by another Lattice. 00357 // The other Lattice can be a scalar (e.g. the result of LatticeExpr). 00358 // Possible masks are not taken into account. 00359 // <group> 00360 void operator+= (const Lattice<T>& other) 00361 { handleMath (other, 0); } 00362 void operator-= (const Lattice<T>& other) 00363 { handleMath (other, 1); } 00364 void operator*= (const Lattice<T>& other) 00365 { handleMath (other, 2); } 00366 void operator/= (const Lattice<T>& other) 00367 { handleMath (other, 3); } 00368 // </group> 00369 00370 // Copy the data from the given lattice to this one. 00371 // The default implementation uses function <src>copyDataTo</src>. 00372 virtual void copyData (const Lattice<T>& from); 00373 00374 // Copy the data from this lattice to the given lattice. 00375 // The default implementation only copies data (thus no mask, etc.). 00376 virtual void copyDataTo (Lattice<T>& to) const; 00377 00378 // This function returns the advised maximum number of pixels to 00379 // include in the cursor of an iterator. The default implementation 00380 // returns a number that is a power of two and includes enough pixels to 00381 // consume between 4 and 8 MBytes of memory. 00382 virtual uInt advisedMaxPixels() const; 00383 00384 // These functions are used by the LatticeIterator class to generate an 00385 // iterator of the correct type for a specified Lattice. Not recommended 00386 // for general use. 00387 // <br>The default implementation creates a LatticeIterInterface object. 00388 virtual LatticeIterInterface<T>* makeIter (const LatticeNavigator& navigator, 00389 Bool useRef) const; 00390 00391 // The functions (in the derived classes) doing the actual work. 00392 // These functions are public, so they can be used internally in the 00393 // various Lattice classes, which is especially useful for doGetSlice. 00394 // <br>However, doGetSlice does not call Slicer::inferShapeFromSource 00395 // to fill in possible unspecified section values. Therefore one 00396 // should normally use one of the get(Slice) functions. doGetSlice 00397 // should be used with care and only when performance is an issue. 00398 // <group> 00399 virtual Bool doGetSlice (Array<T>& buffer, const Slicer& section) = 0; 00400 virtual void doPutSlice (const Array<T>& buffer, const IPosition& where, 00401 const IPosition& stride) = 0; 00402 // </group> 00403 00404 protected: 00405 // Define default constructor to satisfy compiler. 00406 Lattice() {}; 00407 00408 // Handle the Math operators (+=, -=, *=, /=). 00409 // They work similarly to copyData(To). 00410 // However, they are not defined for Bool types, thus specialized below. 00411 // <group> 00412 virtual void handleMath (const Lattice<T>& from, int oper); 00413 virtual void handleMathTo (Lattice<T>& to, int oper) const; 00414 // </group> 00415 00416 // Copy constructor and assignment can only be used by derived classes. 00417 // <group> 00418 Lattice (const Lattice<T>&) 00419 : LatticeBase() {} 00420 Lattice<T>& operator= (const Lattice<T>&) 00421 { return *this; } 00422 // </group> 00423 }; 00424 00425 00426 template<> inline 00427 void Lattice<Bool>::handleMathTo (Lattice<Bool>&, int) const 00428 { throwBoolMath(); } 00429 00430 00431 00432 } //# NAMESPACE CASA - END 00433 00434 //# There is a problem in including Lattice.tcc, because it needs 00435 //# LatticeIterator.h which in its turn includes Lattice.h again. 00436 //# So in a source file including LatticeIterator.h, Lattice::set fails 00437 //# to compile, because the LatticeIterator declarations are not seen yet. 00438 //# Therefore LatticeIterator.h is included here, while LatticeIterator.h 00439 //# includes Lattice.tcc. 00440 #ifndef CASACORE_NO_AUTO_TEMPLATES 00441 #include <lattices/Lattices/LatticeIterator.h> 00442 #endif //# CASACORE_NO_AUTO_TEMPLATES 00443 #endif