casa
$Rev:20696$
|
00001 //# LinearFitSVD.h: Linear fit using Singular Value Decomposition method. 00002 //# 00003 //# Copyright (C) 1995,1999,2000,2001,2002,2004 00004 //# Associated Universities, Inc. Washington DC, USA. 00005 //# 00006 //# This library is free software; you can redistribute it and/or modify it 00007 //# under the terms of the GNU Library General Public License as published by 00008 //# the Free Software Foundation; either version 2 of the License, or (at your 00009 //# option) any later version. 00010 //# 00011 //# This library is distributed in the hope that it will be useful, but WITHOUT 00012 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00013 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 00014 //# License for more details. 00015 //# 00016 //# You should have received a copy of the GNU Library General Public License 00017 //# along with this library; if not, write to the Free Software Foundation, 00018 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 00019 //# 00020 //# Correspondence concerning AIPS++ should be addressed as follows: 00021 //# Internet email: aips2-request@nrao.edu. 00022 //# Postal address: AIPS++ Project Office 00023 //# National Radio Astronomy Observatory 00024 //# 520 Edgemont Road 00025 //# Charlottesville, VA 22903-2475 USA 00026 //# 00027 //# $Id: LinearFitSVD.h 20229 2008-01-29 15:19:06Z gervandiepen $ 00028 00029 #ifndef SCIMATH_LINEARFITSVD_H 00030 #define SCIMATH_LINEARFITSVD_H 00031 00032 #include <casa/aips.h> 00033 #include <scimath/Fitting/LinearFit.h> 00034 00035 namespace casa { //# NAMESPACE CASA - BEGIN 00036 00037 // <summary> 00038 // Linear least-squares fit using Singular Value Decomposition method. 00039 // </summary> 00040 // 00041 // <reviewed reviewer="wbrouw" date="2004/06/15" tests="tLinearFitSVD.cc" 00042 // demos=""> 00043 // </reviewed> 00044 // 00045 // <prerequisite> 00046 // <li> <linkto class="LinearFit">LinearFit</linkto> 00047 // <li> <linkto module="Fitting">Fitting</linkto> 00048 // </prerequisite> 00049 // 00050 // <etymology> 00051 // Solves the linear least-squares fit problem using the singular value 00052 // decomposition method. 00053 // </etymology> 00054 // 00055 // <synopsis> 00056 // The operation, calls and results are identical to those for the 00057 // LinearFit class. The only difference is a collinearity default of 1e-8 00058 // rather than 0. The actual calculations do a singular value 00059 // decomposition solution. A method exists to get the constraints 00060 // used in solving for missing rank. 00061 // 00062 // </synopsis> 00063 // 00064 // <motivation> 00065 // The creation of this class was driven by the need to provide users with 00066 // a reliable least-squares fit method. "Numerical Recipes" recommends that 00067 // singular value decomposition (SVD) method be always used for linear 00068 // least-squares problems, because of its robustness. 00069 // Not everybody agrees with this. 00070 // </motivation> 00071 00072 template<class T> class LinearFitSVD: public LinearFit<T> 00073 { 00074 public: 00075 //# Constructors 00076 // Create a fitter: the normal way to generate a fitter object. Necessary 00077 // data will be deduced from the Functional provided with 00078 // <src>setFunction()</src> 00079 LinearFitSVD(); 00080 // Copy constructor (deep copy) 00081 LinearFitSVD(const LinearFitSVD &other); 00082 // Assignment (deep copy) 00083 LinearFitSVD &operator=(const LinearFitSVD &other); 00084 00085 // Destructor 00086 virtual ~LinearFitSVD(); 00087 00088 protected: 00089 //# Make members of parent classes known. 00090 using LinearFit<T>::svd_p; 00091 using LinearFit<T>::COLLINEARITY; 00092 }; 00093 00094 00095 } //# NAMESPACE CASA - END 00096 00097 #ifndef CASACORE_NO_AUTO_TEMPLATES 00098 #include <scimath/Fitting/LinearFitSVD.tcc> 00099 #endif //# CASACORE_NO_AUTO_TEMPLATES 00100 #endif