casa  $Rev:20696$
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
MaskedLattice.h
Go to the documentation of this file.
00001 //# MaskedLattice.h: Abstract base class for array-like classes with masks
00002 //# Copyright (C) 1998,1999,2000
00003 //# Associated Universities, Inc. Washington DC, USA.
00004 //#
00005 //# This library is free software; you can redistribute it and/or modify it
00006 //# under the terms of the GNU Library General Public License as published by
00007 //# the Free Software Foundation; either version 2 of the License, or (at your
00008 //# option) any later version.
00009 //#
00010 //# This library is distributed in the hope that it will be useful, but WITHOUT
00011 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00012 //# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
00013 //# License for more details.
00014 //#
00015 //# You should have received a copy of the GNU Library General Public License
00016 //# along with this library; if not, write to the Free Software Foundation,
00017 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
00018 //#
00019 //# Correspondence concerning AIPS++ should be addressed as follows:
00020 //#        Internet email: aips2-request@nrao.edu.
00021 //#        Postal address: AIPS++ Project Office
00022 //#                        National Radio Astronomy Observatory
00023 //#                        520 Edgemont Road
00024 //#                        Charlottesville, VA 22903-2475 USA
00025 //#
00026 //# $Id: MaskedLattice.h 20739 2009-09-29 01:15:15Z Malte.Marquarding $
00027 
00028 #ifndef LATTICES_MASKEDLATTICE_H
00029 #define LATTICES_MASKEDLATTICE_H
00030 
00031 
00032 //# Includes
00033 #include <lattices/Lattices/Lattice.h>
00034 
00035 namespace casa { //# NAMESPACE CASA - BEGIN
00036 
00037 //# Forward Declarations
00038 class LatticeRegion;
00039 
00040 
00041 // <summary>
00042 // A templated, abstract base class for array-like objects with masks.
00043 // </summary>
00044 
00045 // <use visibility=export>
00046 
00047 // <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos="dLattice.cc">
00048 // </reviewed>
00049 
00050 // <prerequisite>
00051 //   <li> <linkto class="IPosition"> IPosition </linkto>
00052 //   <li> Abstract Base class Inheritance - try "Advanced C++" by James
00053 //        O. Coplien, Ch. 5.
00054 // </prerequisite>
00055 
00056 // <etymology>
00057 // Lattice: "A regular, periodic configuration of points, particles, 
00058 // or objects, throughout an area of a space..." (American Heritage Directory)
00059 // This definition matches our own: an n-dimensional arrangement of items,
00060 // on regular orthogonal axes.
00061 // </etymology>
00062 
00063 // <synopsis>
00064 // This pure abstract base class defines the operations which may be performed
00065 // on any concrete class derived from it.  It has only a few non-pure virtual 
00066 // member functions.
00067 // The fundamental contribution of this class, therefore, is that it 
00068 // defines the operations derived classes must provide:
00069 // <ul>
00070 //    <li> how to extract a "slice" (or sub-array, or subsection) from
00071 //         a Lattice.
00072 //    <li> how to copy a slice in.
00073 //    <li> how to get and put a single element 
00074 //    <li> how to apply a function to all elements
00075 //    <li> various shape related functions.
00076 // </ul>
00077 // <note role=tip> Lattices are always zero origined. </note>
00078 // </synopsis> 
00079 
00080 // <example>
00081 // Because Lattice is an abstract base class, an actual instance of this
00082 // class cannot be constructed. However the interface it defines can be used
00083 // inside a function. This is always recommended as it allows Functions
00084 // which have Lattices as arguments to work for any derived class.
00085 //
00086 // I will give a few examples here and then refer the reader to the 
00087 // <linkto class="ArrayLattice">ArrayLattice</linkto> class (a memory resident
00088 // Lattice) and the <linkto class="PagedArray">PagedArray</linkto> class (a
00089 // disk based Lattice) which contain further examples with concrete
00090 // classes (rather than an abstract one). All the examples shown below are used
00091 // in the <src>dLattice.cc</src> demo program.
00092 //
00093 // <h4>Example 1:</h4>
00094 // This example calculates the mean of the Lattice. Because Lattices can be too
00095 // large to fit into physical memory it is not good enough to simply use
00096 // <src>getSlice</src> to read all the elements into an Array. Instead the
00097 // Lattice is accessed in chunks which can fit into memory (the size is
00098 // determined by the <src>maxPixels</src> and <src>niceCursorShape</src>
00099 // functions). The <src>LatticeIterator::cursor()</src> function then returns
00100 // each of these chunks as an Array and the standard Array based functions are
00101 // used to calculate the mean on each of these chunks. Functions like this one
00102 // are the recommended way to access Lattices as the 
00103 // <linkto class="LatticeIterator">LatticeIterator</linkto> will correctly
00104 // setup any required caches.
00105 //
00106 // <srcblock>
00107 // Complex latMean(const Lattice<Complex>& lat) {
00108 //   const uInt cursorSize = lat.advisedMaxPixels();
00109 //   const IPosition cursorShape = lat.niceCursorShape(cursorSize);
00110 //   const IPosition latticeShape = lat.shape();
00111 //   Complex currentSum = 0.0f;
00112 //   size_t nPixels = 0;
00113 //   RO_LatticeIterator<Complex> iter(lat, 
00114 //                                 LatticeStepper(latticeShape, cursorShape));
00115 //   for (iter.reset(); !iter.atEnd(); iter++){
00116 //     currentSum += sum(iter.cursor());
00117 //     nPixels += iter.cursor().nelements();
00118 //   }
00119 //   return currentSum/nPixels;
00120 // }
00121 // </srcblock>
00122 //
00123 // <h4>Example 2:</h4>
00124 // Sometimes it will be neccesary to access slices of a Lattice in a nearly
00125 // random way. Often this can be done using the subSection commands in the
00126 // <linkto class="LatticeStepper">LatticeStepper</linkto> class. But it is also
00127 // possible to use the getSlice and putSlice functions. The following example
00128 // does a two-dimensional Real to Complex Fourier transform. This example is
00129 // restricted to four-dimensional Arrays (unlike the previous example) and does
00130 // not set up any caches (caching is currently only used with PagedArrays).  So
00131 // only use getSlice and putSlice when things cannot be done using
00132 // LatticeIterators.
00133 //
00134 // <srcblock>
00135 // void FFT2DReal2Complex(Lattice<Complex>& result, 
00136 //                     const Lattice<Float>& input){
00137 //   AlwaysAssert(input.ndim() == 4, AipsError);
00138 //   const IPosition shape = input.shape();
00139 //   const uInt nx = shape(0);
00140 //   AlwaysAssert (nx > 1, AipsError);
00141 //   const uInt ny = shape(1);
00142 //   AlwaysAssert (ny > 1, AipsError);
00143 //   const uInt npol = shape(2);
00144 //   const uInt nchan = shape(3); 
00145 //   const IPosition resultShape = result.shape();
00146 //   AlwaysAssert(resultShape.nelements() == 4, AipsError);
00147 //   AlwaysAssert(resultShape(3) == nchan, AipsError);
00148 //   AlwaysAssert(resultShape(2) == npol, AipsError);
00149 //   AlwaysAssert(resultShape(1) == ny, AipsError);
00150 //   AlwaysAssert(resultShape(0) == nx/2 + 1, AipsError);
00151 //
00152 //   const IPosition inputSliceShape(4,nx,ny,1,1);
00153 //   const IPosition resultSliceShape(4,nx/2+1,ny,1,1);
00154 //   COWPtr<Array<Float> > 
00155 //     inputArrPtr(new Array<Float>(inputSliceShape.nonDegenerate()));
00156 //   Array<Complex> resultArray(resultSliceShape.nonDegenerate());
00157 //   FFTServer<Float, Complex> FFT2D(inputSliceShape.nonDegenerate());
00158 //  
00159 //   IPosition start(4,0);
00160 //   Bool isARef;
00161 //   for (uInt c = 0; c < nchan; c++){
00162 //     for (uInt p = 0; p < npol; p++){
00163 //       isARef = input.getSlice(inputArrPtr,
00164 //                               Slicer(start,inputSliceShape), True);
00165 //       FFT2D.fft(resultArray, *inputArrPtr);
00166 //       result.putSlice(resultArray, start);
00167 //       start(2) += 1;
00168 //     }
00169 //     start(2) = 0;
00170 //     start(3) += 1;
00171 //   }
00172 // }
00173 // </srcblock>
00174 //
00175 // <h4>Example 3:</h4>
00176 // Occasionally you may want to access a few elements of a Lattice without
00177 // all the difficulty involved in setting up Iterators or calling getSlice
00178 // and putSlice. This is demonstrated in the example below and uses the
00179 // parenthesis operator, along with the LatticeValueRef companion
00180 // class. Using these functions to access many elements of a Lattice is not
00181 // recommended as this is the slowest access method.
00182 //
00183 // In this example an ideal point spread function will be inserted into an
00184 // empty Lattice. As with the previous examples all the action occurs
00185 // inside a function because Lattice is an interface (abstract) class.
00186 //
00187 // <srcblock>
00188 // void makePsf(Lattice<Float>& psf) {
00189 //   const IPosition centrePos = psf.shape()/2;
00190 //   psf.set(0.0f);       // this sets all the elements to zero
00191 //                        // As it uses a LatticeIterator it is efficient
00192 //   psf(centrePos) = 1;  // This sets just the centre element to one
00193 //   AlwaysAssert(near(psf(centrePos), 1.0f, 1E-6), AipsError);
00194 //   AlwaysAssert(near(psf(centrePos*0), 0.0f, 1E-6), AipsError);
00195 // }
00196 // </srcblock>
00197 // </example>
00198 
00199 // <motivation>
00200 // Creating an abstract base class which provides a common interface between
00201 // memory and disk based arrays has a number of advantages.
00202 // <ul>
00203 // <li> It allows functions common to all arrays to be written independent
00204 // of the way the data is stored. This is illustrated in the three examples
00205 // above. 
00206 // <li> It reduces the learning curve for new users who only have to become
00207 // familiar with one interface (ie. Lattice) rather than distinct interfaces
00208 // for different array types. 
00209 // </ul>
00210 // </motivation>
00211 
00212 //# <todo asof="1996/07/01">
00213 //#  <li>
00214 //# </todo>
00215 
00216 template <class T> class MaskedLattice : public Lattice<T>
00217 {
00218   //# Make members of parent class known.
00219 public:
00220   using Lattice<T>::ndim;
00221   using Lattice<T>::shape;
00222 
00223 public: 
00224   // Default constructor.
00225   MaskedLattice()
00226     : itsDefRegPtr(0) {;}
00227 
00228   // Copy constructor.
00229   MaskedLattice (const MaskedLattice<T>&);
00230 
00231   // a virtual destructor is needed so that it will use the actual destructor
00232   // in the derived class
00233   virtual ~MaskedLattice();
00234 
00235   // Make a copy of the object (reference semantics).
00236   // <group>
00237   virtual MaskedLattice<T>* cloneML() const = 0;
00238   virtual Lattice<T>* clone() const;
00239   // </group>
00240 
00241   // Has the object really a mask?
00242   // The default implementation returns True if the MaskedLattice has
00243   // a region with a mask.
00244   virtual Bool isMasked() const;
00245 
00246   // Does the lattice have a pixelmask?
00247   // The default implementation returns False.
00248   virtual Bool hasPixelMask() const;
00249 
00250   // Get access to the pixelmask.
00251   // An exception is thrown if the lattice does not have a pixelmask.
00252   // <group>
00253   virtual const Lattice<Bool>& pixelMask() const;
00254   virtual Lattice<Bool>& pixelMask();
00255   // </group>
00256 
00257   // Get the region used.
00258   // This is in principle the region pointed to by <src>getRegionPtr</src>.
00259   // However, if that pointer is 0, it returns a LatticeRegion for the
00260   // full image.
00261   const LatticeRegion& region() const;
00262 
00263   // Get the mask or a slice from the mask.
00264   // This is the mask formed by combination of the possible pixelmask of the
00265   // lattice and the possible mask of the region taken from the lattice.
00266   // If there is no mask, it still works fine.
00267   // In that case it sizes the buffer correctly and sets it to True.
00268   // <group>   
00269   Bool getMask (COWPtr<Array<Bool> >& buffer,
00270                 Bool removeDegenerateAxes=False) const;
00271   Bool getMaskSlice (COWPtr<Array<Bool> >& buffer, const Slicer& section,
00272                      Bool removeDegenerateAxes=False) const;
00273   Bool getMaskSlice (COWPtr<Array<Bool> >& buffer, const IPosition& start, 
00274                      const IPosition& shape,
00275                      Bool removeDegenerateAxes=False) const;
00276   Bool getMaskSlice (COWPtr<Array<Bool> >& buffer, const IPosition& start, 
00277                      const IPosition& shape, const IPosition& stride,
00278                      Bool removeDegenerateAxes=False) const;
00279   Bool getMask (Array<Bool>& buffer,
00280                 Bool removeDegenerateAxes=False);
00281   Bool getMaskSlice (Array<Bool>& buffer, const Slicer& section,
00282                      Bool removeDegenerateAxes=False);
00283   Bool getMaskSlice (Array<Bool>& buffer, const IPosition& start,
00284                      const IPosition& shape,
00285                      Bool removeDegenerateAxes=False);
00286   Bool getMaskSlice (Array<Bool>& buffer, const IPosition& start,
00287                      const IPosition& shape, const IPosition& stride,
00288                      Bool removeDegenerateAxes=False);
00289   Array<Bool> getMask (Bool removeDegenerateAxes=False) const;
00290   Array<Bool> getMaskSlice (const Slicer& section,
00291                             Bool removeDegenerateAxes=False) const;
00292   Array<Bool> getMaskSlice (const IPosition& start,
00293                             const IPosition& shape,
00294                             Bool removeDegenerateAxes=False) const;
00295   Array<Bool> getMaskSlice (const IPosition& start,
00296                             const IPosition& shape, const IPosition& stride,
00297                             Bool removeDegenerateAxes=False) const;
00298   // </group>
00299   
00300   // The function (in the derived classes) doing the actual work.
00301   // These functions are public, so they can be used internally in the
00302   // various Lattice classes.
00303   // <br>However, doGetMaskSlice does not call Slicer::inferShapeFromSource
00304   // to fill in possible unspecified section values. Therefore one
00305   // should normally use one of the getMask(Slice) functions. doGetMaskSlice
00306   // should be used with care and only when performance is an issue.
00307   // <br>The default implementation gets the mask from the region
00308   // and fills the buffer with True values if there is no region.
00309   virtual Bool doGetMaskSlice (Array<Bool>& buffer, const Slicer& section);
00310 
00311 protected:
00312   // Assignment can only be used by derived classes.
00313   MaskedLattice<T>& operator= (const MaskedLattice<T>&);
00314 
00315   // Get a pointer to the region used.
00316   // It can return 0 meaning that the MaskedLattice is the full lattice.
00317   virtual const LatticeRegion* getRegionPtr() const = 0;
00318 
00319 private:
00320   mutable LatticeRegion* itsDefRegPtr;
00321 };
00322 
00323 
00324 
00325 } //# NAMESPACE CASA - END
00326 
00327 #ifndef CASACORE_NO_AUTO_TEMPLATES
00328 #include <lattices/Lattices/MaskedLattice.tcc>
00329 #endif //# CASACORE_NO_AUTO_TEMPLATES
00330 #endif