00001 import _asap
00002 from asap.parameters import rcParams
00003 from asap.logging import asaplog, asaplog_post_dec
00004 from asap.utils import _n_bools, mask_and
00005 from numpy import ndarray
00006
00007 class fitter:
00008 """
00009 The fitting class for ASAP.
00010 """
00011 def __init__(self):
00012 """
00013 Create a fitter object. No state is set.
00014 """
00015 self.fitter = _asap.fitter()
00016 self.x = None
00017 self.y = None
00018 self.mask = None
00019 self.fitfunc = None
00020 self.fitfuncs = None
00021 self.fitted = False
00022 self.data = None
00023 self.components = 0
00024 self._fittedrow = 0
00025 self._p = None
00026 self._selection = None
00027 self.uselinear = False
00028 self._constraints = []
00029
00030 def set_data(self, xdat, ydat, mask=None):
00031 """
00032 Set the absissa and ordinate for the fit. Also set the mask
00033 indicating valid points.
00034 This can be used for data vectors retrieved from a scantable.
00035 For scantable fitting use 'fitter.set_scan(scan, mask)'.
00036 Parameters:
00037 xdat: the abcissa values
00038 ydat: the ordinate values
00039 mask: an optional mask
00040
00041 """
00042 self.fitted = False
00043 self.x = xdat
00044 self.y = ydat
00045 if mask == None:
00046 self.mask = _n_bools(len(xdat), True)
00047 else:
00048 self.mask = mask
00049 return
00050
00051 @asaplog_post_dec
00052 def set_scan(self, thescan=None, mask=None):
00053 """
00054 Set the 'data' (a scantable) of the fitter.
00055 Parameters:
00056 thescan: a scantable
00057 mask: a msk retrieved from the scantable
00058 """
00059 if not thescan:
00060 msg = "Please give a correct scan"
00061 raise TypeError(msg)
00062 self.fitted = False
00063 self.data = thescan
00064 self.mask = None
00065 if mask is None:
00066 self.mask = _n_bools(self.data.nchan(), True)
00067 else:
00068 self.mask = mask
00069 return
00070
00071 @asaplog_post_dec
00072 def set_function(self, **kwargs):
00073 """
00074 Set the function to be fit.
00075 Parameters:
00076 poly: use a polynomial of the order given with nonlinear
00077 least squares fit
00078 lpoly: use polynomial of the order given with linear least
00079 squares fit
00080 gauss: fit the number of gaussian specified
00081 lorentz: fit the number of lorentzian specified
00082 sinusoid: fit the number of sinusoid specified
00083 Example:
00084 fitter.set_function(poly=3) # will fit a 3rd order polynomial
00085 # via nonlinear method
00086 fitter.set_function(lpoly=3) # will fit a 3rd order polynomial
00087 # via linear method
00088 fitter.set_function(gauss=2) # will fit two gaussians
00089 fitter.set_function(lorentz=2) # will fit two lorentzians
00090 fitter.set_function(sinusoid=3) # will fit three sinusoids
00091 """
00092
00093 n=0
00094 if kwargs.has_key('poly'):
00095 self.fitfunc = 'poly'
00096 self.fitfuncs = ['poly']
00097 n = kwargs.get('poly')
00098 self.components = [n+1]
00099 self.uselinear = False
00100 elif kwargs.has_key('lpoly'):
00101 self.fitfunc = 'poly'
00102 self.fitfuncs = ['lpoly']
00103 n = kwargs.get('lpoly')
00104 self.components = [n+1]
00105 self.uselinear = True
00106 elif kwargs.has_key('gauss'):
00107 n = kwargs.get('gauss')
00108 self.fitfunc = 'gauss'
00109 self.fitfuncs = [ 'gauss' for i in range(n) ]
00110 self.components = [ 3 for i in range(n) ]
00111 self.uselinear = False
00112 elif kwargs.has_key('lorentz'):
00113 n = kwargs.get('lorentz')
00114 self.fitfunc = 'lorentz'
00115 self.fitfuncs = [ 'lorentz' for i in range(n) ]
00116 self.components = [ 3 for i in range(n) ]
00117 self.uselinear = False
00118 elif kwargs.has_key('sinusoid'):
00119 n = kwargs.get('sinusoid')
00120 self.fitfunc = 'sinusoid'
00121 self.fitfuncs = [ 'sinusoid' for i in range(n) ]
00122 self.components = [ 3 for i in range(n) ]
00123 self.uselinear = False
00124 elif kwargs.has_key('expression'):
00125 self.uselinear = False
00126 raise RuntimeError("Not yet implemented")
00127 else:
00128 msg = "Invalid function type."
00129 raise TypeError(msg)
00130
00131 self.fitter.setexpression(self.fitfunc,n)
00132 self._constraints = []
00133 self.fitted = False
00134 return
00135
00136 @asaplog_post_dec
00137 def fit(self, row=0, estimate=False):
00138 """
00139 Execute the actual fitting process. All the state has to be set.
00140 Parameters:
00141 row: specify the row in the scantable
00142 estimate: auto-compute an initial parameter set (default False)
00143 This can be used to compute estimates even if fit was
00144 called before.
00145 Example:
00146 s = scantable('myscan.asap')
00147 s.set_cursor(thepol=1) # select second pol
00148 f = fitter()
00149 f.set_scan(s)
00150 f.set_function(poly=0)
00151 f.fit(row=0) # fit first row
00152 """
00153 if ((self.x is None or self.y is None) and self.data is None) \
00154 or self.fitfunc is None:
00155 msg = "Fitter not yet initialised. Please set data & fit function"
00156 raise RuntimeError(msg)
00157
00158 if self.data is not None:
00159 self.x = self.data._getabcissa(row)
00160 self.y = self.data._getspectrum(row)
00161
00162 if len(self.x) == len(self.mask):
00163 self.mask = mask_and(self.mask, self.data._getmask(row))
00164 else:
00165 asaplog.push('lengths of data and mask are not the same. '
00166 'preset mask will be ignored')
00167 asaplog.post('WARN','asapfit.fit')
00168 self.mask=self.data._getmask(row)
00169 asaplog.push("Fitting:")
00170 i = row
00171 out = "Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (
00172 self.data.getscan(i),
00173 self.data.getbeam(i),
00174 self.data.getif(i),
00175 self.data.getpol(i),
00176 self.data.getcycle(i))
00177
00178 asaplog.push(out, False)
00179
00180 self.fitter.setdata(self.x, self.y, self.mask)
00181 if self.fitfunc == 'gauss' or self.fitfunc == 'lorentz':
00182 ps = self.fitter.getparameters()
00183 if len(ps) == 0 or estimate:
00184 self.fitter.estimate()
00185 fxdpar = list(self.fitter.getfixedparameters())
00186 if len(fxdpar) and fxdpar.count(0) == 0:
00187 raise RuntimeError,"No point fitting, if all parameters are fixed."
00188 if self._constraints:
00189 for c in self._constraints:
00190 self.fitter.addconstraint(c[0]+[c[-1]])
00191 if self.uselinear:
00192 converged = self.fitter.lfit()
00193 else:
00194 converged = self.fitter.fit()
00195 if not converged:
00196 raise RuntimeError,"Fit didn't converge."
00197 self._fittedrow = row
00198 self.fitted = True
00199 return
00200
00201 def store_fit(self, filename=None):
00202 """
00203 Save the fit parameters.
00204 Parameters:
00205 filename: if specified save as an ASCII file, if None (default)
00206 store it in the scnatable
00207 """
00208 if self.fitted and self.data is not None:
00209 pars = list(self.fitter.getparameters())
00210 fixed = list(self.fitter.getfixedparameters())
00211 from asap.asapfit import asapfit
00212 fit = asapfit()
00213 fit.setparameters(pars)
00214 fit.setfixedparameters(fixed)
00215 fit.setfunctions(self.fitfuncs)
00216 fit.setcomponents(self.components)
00217 fit.setframeinfo(self.data._getcoordinfo())
00218 if filename is not None:
00219 import os
00220 filename = os.path.expandvars(os.path.expanduser(filename))
00221 if os.path.exists(filename):
00222 raise IOError("File '%s' exists." % filename)
00223 fit.save(filename)
00224 else:
00225 self.data._addfit(fit,self._fittedrow)
00226
00227 @asaplog_post_dec
00228 def set_parameters(self,*args,**kwargs):
00229 """
00230 Set the parameters to be fitted.
00231 Parameters:
00232 params: a vector of parameters
00233 fixed: a vector of which parameters are to be held fixed
00234 (default is none)
00235 component: in case of multiple gaussians/lorentzians/sinusoidals,
00236 the index of the target component
00237 """
00238 component = None
00239 fixed = None
00240 params = None
00241
00242 if len(args) and isinstance(args[0],dict):
00243 kwargs = args[0]
00244 if kwargs.has_key("fixed"): fixed = kwargs["fixed"]
00245 if kwargs.has_key("params"): params = kwargs["params"]
00246 if len(args) == 2 and isinstance(args[1], int):
00247 component = args[1]
00248 if self.fitfunc is None:
00249 msg = "Please specify a fitting function first."
00250 raise RuntimeError(msg)
00251 if (self.fitfunc == "gauss" or self.fitfunc == "lorentz"
00252 or self.fitfunc == "sinusoid") and component is not None:
00253 if not self.fitted and sum(self.fitter.getparameters()) == 0:
00254 pars = _n_bools(len(self.components)*3, False)
00255 fxd = _n_bools(len(pars), False)
00256 else:
00257 pars = list(self.fitter.getparameters())
00258 fxd = list(self.fitter.getfixedparameters())
00259 i = 3*component
00260 pars[i:i+3] = params
00261 fxd[i:i+3] = fixed
00262 params = pars
00263 fixed = fxd
00264 self.fitter.setparameters(params)
00265 if fixed is not None:
00266 self.fitter.setfixedparameters(fixed)
00267 return
00268
00269 @asaplog_post_dec
00270 def set_gauss_parameters(self, peak, centre, fwhm,
00271 peakfixed=0, centrefixed=0,
00272 fwhmfixed=0,
00273 component=0):
00274 """
00275 Set the Parameters of a 'Gaussian' component, set with set_function.
00276 Parameters:
00277 peak, centre, fwhm: The gaussian parameters
00278 peakfixed,
00279 centrefixed,
00280 fwhmfixed: Optional parameters to indicate if
00281 the paramters should be held fixed during
00282 the fitting process. The default is to keep
00283 all parameters flexible.
00284 component: The number of the component (Default is the
00285 component 0)
00286 """
00287 if self.fitfunc != "gauss":
00288 msg = "Function only operates on Gaussian components."
00289 raise ValueError(msg)
00290 if 0 <= component < len(self.components):
00291 d = {'params':[peak, centre, fwhm],
00292 'fixed':[peakfixed, centrefixed, fwhmfixed]}
00293 self.set_parameters(d, component)
00294 else:
00295 msg = "Please select a valid component."
00296 raise ValueError(msg)
00297
00298 @asaplog_post_dec
00299 def set_lorentz_parameters(self, peak, centre, fwhm,
00300 peakfixed=0, centrefixed=0,
00301 fwhmfixed=0,
00302 component=0):
00303 """
00304 Set the Parameters of a 'Lorentzian' component, set with set_function.
00305 Parameters:
00306 peak, centre, fwhm: The lorentzian parameters
00307 peakfixed,
00308 centrefixed,
00309 fwhmfixed: Optional parameters to indicate if
00310 the paramters should be held fixed during
00311 the fitting process. The default is to keep
00312 all parameters flexible.
00313 component: The number of the component (Default is the
00314 component 0)
00315 """
00316 if self.fitfunc != "lorentz":
00317 msg = "Function only operates on Lorentzian components."
00318 raise ValueError(msg)
00319 if 0 <= component < len(self.components):
00320 d = {'params':[peak, centre, fwhm],
00321 'fixed':[peakfixed, centrefixed, fwhmfixed]}
00322 self.set_parameters(d, component)
00323 else:
00324 msg = "Please select a valid component."
00325 raise ValueError(msg)
00326
00327 @asaplog_post_dec
00328 def set_sinusoid_parameters(self, ampl, period, x0,
00329 amplfixed=0, periodfixed=0,
00330 x0fixed=0,
00331 component=0):
00332 """
00333 Set the Parameters of a 'Sinusoidal' component, set with set_function.
00334 Parameters:
00335 ampl, period, x0: The sinusoidal parameters
00336 amplfixed,
00337 periodfixed,
00338 x0fixed: Optional parameters to indicate if
00339 the paramters should be held fixed during
00340 the fitting process. The default is to keep
00341 all parameters flexible.
00342 component: The number of the component (Default is the
00343 component 0)
00344 """
00345 if self.fitfunc != "sinusoid":
00346 msg = "Function only operates on Sinusoidal components."
00347 raise ValueError(msg)
00348 if 0 <= component < len(self.components):
00349 d = {'params':[ampl, period, x0],
00350 'fixed': [amplfixed, periodfixed, x0fixed]}
00351 self.set_parameters(d, component)
00352 else:
00353 msg = "Please select a valid component."
00354 raise ValueError(msg)
00355
00356
00357 def add_constraint(self, xpar, y):
00358 """Add parameter constraints to the fit. This is done by setting up
00359 linear equations for the related parameters.
00360
00361 For example a two component gaussian fit where the amplitudes are
00362 constraint by amp1 = 2*amp2 and paramaters for the two components
00363 in the order [amp1,peakv1,sigma1,amp2,peakv2,sigma2]
00364 needs a constraint
00365
00366 add_constraint([1, 0, 0, -2, 0, 0], 0)
00367
00368 as the linear equation is
00369
00370 1*amp1 + 0*peakv1 + 0*sigma1 -2*amp2 + 0*peakv2 + 0*sigma2 = 0
00371
00372 and similarly for a velocity difference of v2-v1=17
00373
00374 add_constraint([0.,-1.,0.,0.,1.,0.], 17.)
00375
00376 """
00377 self._constraints.append((xpar, y))
00378
00379
00380 def get_area(self, component=None):
00381 """
00382 Return the area under the fitted gaussian/lorentzian component.
00383 Parameters:
00384 component: the gaussian/lorentzian component selection,
00385 default (None) is the sum of all components
00386 Note:
00387 This will only work for gaussian/lorentzian fits.
00388 """
00389 if not self.fitted: return
00390 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
00391 pars = list(self.fitter.getparameters())
00392 from math import log,pi,sqrt
00393 if self.fitfunc == "gauss":
00394 fac = sqrt(pi/log(16.0))
00395 elif self.fitfunc == "lorentz":
00396 fac = pi/2.0
00397 areas = []
00398 for i in range(len(self.components)):
00399 j = i*3
00400 cpars = pars[j:j+3]
00401 areas.append(fac * cpars[0] * cpars[2])
00402 else:
00403 return None
00404 if component is not None:
00405 return areas[component]
00406 else:
00407 return sum(areas)
00408
00409 @asaplog_post_dec
00410 def get_errors(self, component=None):
00411 """
00412 Return the errors in the parameters.
00413 Parameters:
00414 component: get the errors for the specified component
00415 only, default is all components
00416 """
00417 if not self.fitted:
00418 msg = "Not yet fitted."
00419 raise RuntimeError(msg)
00420 errs = list(self.fitter.geterrors())
00421 cerrs = errs
00422 if component is not None:
00423 if self.fitfunc == "gauss" or self.fitfunc == "lorentz" \
00424 or self.fitfunc == "sinusoid":
00425 i = 3*component
00426 if i < len(errs):
00427 cerrs = errs[i:i+3]
00428 return cerrs
00429
00430
00431 @asaplog_post_dec
00432 def get_parameters(self, component=None, errors=False):
00433 """
00434 Return the fit paramters.
00435 Parameters:
00436 component: get the parameters for the specified component
00437 only, default is all components
00438 """
00439 if not self.fitted:
00440 msg = "Not yet fitted."
00441 raise RuntimeError(msg)
00442 pars = list(self.fitter.getparameters())
00443 fixed = list(self.fitter.getfixedparameters())
00444 errs = list(self.fitter.geterrors())
00445 area = []
00446 if component is not None:
00447 if self.fitfunc == "poly" or self.fitfunc == "lpoly":
00448 cpars = pars
00449 cfixed = fixed
00450 cerrs = errs
00451 else:
00452 i = 3*component
00453 cpars = pars[i:i+3]
00454 cfixed = fixed[i:i+3]
00455 cerrs = errs[i:i+3]
00456 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
00457 a = self.get_area(component)
00458 area = [a for i in range(3)]
00459 else:
00460 cpars = pars
00461 cfixed = fixed
00462 cerrs = errs
00463 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
00464 for c in range(len(self.components)):
00465 a = self.get_area(c)
00466 area += [a for i in range(3)]
00467 fpars = self._format_pars(cpars, cfixed, errors and cerrs, area)
00468 asaplog.push(fpars)
00469 return {'params':cpars, 'fixed':cfixed, 'formatted': fpars,
00470 'errors':cerrs}
00471
00472 def _format_pars(self, pars, fixed, errors, area):
00473 out = ''
00474 if self.fitfunc == "poly" or self.fitfunc == "lpoly":
00475 c = 0
00476 for i in range(len(pars)):
00477 fix = ""
00478 if len(fixed) and fixed[i]: fix = "(fixed)"
00479 out += " p%d%s= %3.6f" % (c, fix, pars[i])
00480 if errors : out += " (%1.6f)" % errors[i]
00481 out += ","
00482 c+=1
00483 out = out[:-1]
00484 else:
00485 i = 0
00486 c = 0
00487 if self.fitfunc == "gauss" or self.fitfunc == "lorentz":
00488 pnam = ["peak", "centre", "FWHM"]
00489 elif self.fitfunc == "sinusoid":
00490 pnam = ["amplitude", "period", "x0"]
00491 aunit = ""
00492 ounit = ""
00493 if self.data:
00494 aunit = self.data.get_unit()
00495 ounit = self.data.get_fluxunit()
00496 while i < len(pars):
00497 fix0 = fix1 = fix2 = ""
00498 if i < len(fixed)-2:
00499 if fixed[i]: fix0 = "(fixed)"
00500 if fixed[i+1]: fix1 = "(fixed)"
00501 if fixed[i+2]: fix2 = "(fixed)"
00502 out += " %2d: " % c
00503 out += "%s%s = %3.3f %s, " % (pnam[0], fix0, pars[i], ounit)
00504 out += "%s%s = %3.3f %s, " % (pnam[1], fix1, pars[i+1], aunit)
00505 out += "%s%s = %3.3f %s\n" % (pnam[2], fix2, pars[i+2], aunit)
00506 if len(area): out += " area = %3.3f %s %s\n" % (area[i],
00507 ounit,
00508 aunit)
00509 c+=1
00510 i+=3
00511 return out
00512
00513
00514 @asaplog_post_dec
00515 def get_estimate(self):
00516 """
00517 Return the parameter estimates (for non-linear functions).
00518 """
00519 pars = self.fitter.getestimate()
00520 fixed = self.fitter.getfixedparameters()
00521 asaplog.push(self._format_pars(pars,fixed,None,None))
00522 return pars
00523
00524 @asaplog_post_dec
00525 def get_residual(self):
00526 """
00527 Return the residual of the fit.
00528 """
00529 if not self.fitted:
00530 msg = "Not yet fitted."
00531 raise RuntimeError(msg)
00532 return self.fitter.getresidual()
00533
00534 @asaplog_post_dec
00535 def get_chi2(self):
00536 """
00537 Return chi^2.
00538 """
00539 if not self.fitted:
00540 msg = "Not yet fitted."
00541 raise RuntimeError(msg)
00542 ch2 = self.fitter.getchi2()
00543 asaplog.push( 'Chi^2 = %3.3f' % (ch2) )
00544 return ch2
00545
00546 @asaplog_post_dec
00547 def get_fit(self):
00548 """
00549 Return the fitted ordinate values.
00550 """
00551 if not self.fitted:
00552 msg = "Not yet fitted."
00553 raise RuntimeError(msg)
00554 return self.fitter.getfit()
00555
00556 @asaplog_post_dec
00557 def commit(self):
00558 """
00559 Return a new scan where the fits have been commited (subtracted)
00560 """
00561 if not self.fitted:
00562 msg = "Not yet fitted."
00563 raise RuntimeError(msg)
00564 from asap import scantable
00565 if not isinstance(self.data, scantable):
00566 msg = "Not a scantable"
00567 raise TypeError(msg)
00568 scan = self.data.copy()
00569 scan._setspectrum(self.fitter.getresidual())
00570 return scan
00571
00572 @asaplog_post_dec
00573 def plot(self, residual=False, components=None, plotparms=False,
00574 filename=None):
00575 """
00576 Plot the last fit.
00577 Parameters:
00578 residual: an optional parameter indicating if the residual
00579 should be plotted (default 'False')
00580 components: a list of components to plot, e.g [0,1],
00581 -1 plots the total fit. Default is to only
00582 plot the total fit.
00583 plotparms: Inidicates if the parameter values should be present
00584 on the plot
00585 """
00586 from matplotlib import rc as rcp
00587 if not self.fitted:
00588 return
00589
00590 if not (self._p and self._p._alive()):
00591 from asap.asapplotter import new_asaplot
00592 del self._p
00593 self._p = new_asaplot(rcParams['plotter.gui'])
00594 self._p.hold()
00595 self._p.clear()
00596 rcp('lines', linewidth=1)
00597 self._p.set_panels()
00598 self._p.palette(0)
00599 tlab = 'Spectrum'
00600 xlab = 'Abcissa'
00601 ylab = 'Ordinate'
00602 from numpy import ma,logical_not,logical_and,array
00603 m = self.mask
00604 if self.data:
00605 tlab = self.data._getsourcename(self._fittedrow)
00606 xlab = self.data._getabcissalabel(self._fittedrow)
00607 if self.data._getflagrow(self._fittedrow):
00608 m = [False]
00609 else:
00610 m = logical_and(self.mask,
00611 array(self.data._getmask(self._fittedrow),
00612 copy=False))
00613
00614 ylab = self.data._get_ordinate_label()
00615
00616 colours = ["#777777","#dddddd","red","orange","purple","green",
00617 "magenta", "cyan"]
00618 nomask=True
00619 for i in range(len(m)):
00620 nomask = nomask and m[i]
00621 if len(m) == 1:
00622 m = m[0]
00623 invm = (not m)
00624 else:
00625 invm = logical_not(m)
00626 label0='Masked Region'
00627 label1='Spectrum'
00628 if ( nomask ):
00629 label0=label1
00630 else:
00631 y = ma.masked_array( self.y, mask = m )
00632 self._p.palette(1,colours)
00633 self._p.set_line( label = label1 )
00634 self._p.plot( self.x, y )
00635 self._p.palette(0,colours)
00636 self._p.set_line(label=label0)
00637 y = ma.masked_array(self.y,mask=invm)
00638 self._p.plot(self.x, y)
00639 if residual:
00640 self._p.palette(7)
00641 self._p.set_line(label='Residual')
00642 y = ma.masked_array(self.get_residual(),
00643 mask=invm)
00644 self._p.plot(self.x, y)
00645 self._p.palette(2)
00646 if components is not None:
00647 cs = components
00648 if isinstance(components,int): cs = [components]
00649 if plotparms:
00650 self._p.text(0.15,0.15,
00651 str(self.get_parameters()['formatted']),size=8)
00652 n = len(self.components)
00653 self._p.palette(3)
00654 for c in cs:
00655 if 0 <= c < n:
00656 lab = self.fitfuncs[c]+str(c)
00657 self._p.set_line(label=lab)
00658 y = ma.masked_array(self.fitter.evaluate(c), mask=invm)
00659
00660 self._p.plot(self.x, y)
00661 elif c == -1:
00662 self._p.palette(2)
00663 self._p.set_line(label="Total Fit")
00664 y = ma.masked_array(self.fitter.getfit(),
00665 mask=invm)
00666 self._p.plot(self.x, y)
00667 else:
00668 self._p.palette(2)
00669 self._p.set_line(label='Fit')
00670 y = ma.masked_array(self.fitter.getfit(),mask=invm)
00671 self._p.plot(self.x, y)
00672 xlim=[min(self.x),max(self.x)]
00673 self._p.axes.set_xlim(xlim)
00674 self._p.set_axes('xlabel',xlab)
00675 self._p.set_axes('ylabel',ylab)
00676 self._p.set_axes('title',tlab)
00677 self._p.release()
00678 if (not rcParams['plotter.gui']):
00679 self._p.save(filename)
00680
00681 @asaplog_post_dec
00682 def auto_fit(self, insitu=None, plot=False):
00683 """
00684 Return a scan where the function is applied to all rows for
00685 all Beams/IFs/Pols.
00686
00687 """
00688 from asap import scantable
00689 if not isinstance(self.data, scantable) :
00690 msg = "Data is not a scantable"
00691 raise TypeError(msg)
00692 if insitu is None: insitu = rcParams['insitu']
00693 if not insitu:
00694 scan = self.data.copy()
00695 else:
00696 scan = self.data
00697 rows = xrange(scan.nrow())
00698
00699
00700 if len(rows) > 0: self.blpars=[]
00701 asaplog.push("Fitting:")
00702 for r in rows:
00703 out = " Scan[%d] Beam[%d] IF[%d] Pol[%d] Cycle[%d]" % (
00704 scan.getscan(r),
00705 scan.getbeam(r),
00706 scan.getif(r),
00707 scan.getpol(r),
00708 scan.getcycle(r)
00709 )
00710 asaplog.push(out, False)
00711 self.x = scan._getabcissa(r)
00712 self.y = scan._getspectrum(r)
00713
00714 if len(self.x) == len(self.mask):
00715 self.mask = mask_and(self.mask, self.data._getmask(row))
00716 else:
00717 asaplog.push('lengths of data and mask are not the same. '
00718 'preset mask will be ignored')
00719 asaplog.post('WARN','asapfit.fit')
00720 self.mask=self.data._getmask(row)
00721 self.data = None
00722 self.fit()
00723 x = self.get_parameters()
00724 fpar = self.get_parameters()
00725 if plot:
00726 self.plot(residual=True)
00727 x = raw_input("Accept fit ([y]/n): ")
00728 if x.upper() == 'N':
00729 self.blpars.append(None)
00730 continue
00731 scan._setspectrum(self.fitter.getresidual(), r)
00732 self.blpars.append(fpar)
00733 if plot:
00734 self._p.quit()
00735 del self._p
00736 self._p = None
00737 return scan