00001
00002
00003
00004
00005
00006
00007
00008
00009 from sys import version_info
00010 if version_info >= (2,6,0):
00011 def swig_import_helper():
00012 from os.path import dirname
00013 import imp
00014 fp = None
00015 try:
00016 fp, pathname, description = imp.find_module('_imager', [dirname(__file__)])
00017 except ImportError:
00018 import _imager
00019 return _imager
00020 if fp is not None:
00021 try:
00022 _mod = imp.load_module('_imager', fp, pathname, description)
00023 finally:
00024 fp.close()
00025 return _mod
00026 _imager = swig_import_helper()
00027 del swig_import_helper
00028 else:
00029 import _imager
00030 del version_info
00031 try:
00032 _swig_property = property
00033 except NameError:
00034 pass
00035 def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
00036 if (name == "thisown"): return self.this.own(value)
00037 if (name == "this"):
00038 if type(value).__name__ == 'SwigPyObject':
00039 self.__dict__[name] = value
00040 return
00041 method = class_type.__swig_setmethods__.get(name,None)
00042 if method: return method(self,value)
00043 if (not static):
00044 self.__dict__[name] = value
00045 else:
00046 raise AttributeError("You cannot add attributes to %s" % self)
00047
00048 def _swig_setattr(self,class_type,name,value):
00049 return _swig_setattr_nondynamic(self,class_type,name,value,0)
00050
00051 def _swig_getattr(self,class_type,name):
00052 if (name == "thisown"): return self.this.own()
00053 method = class_type.__swig_getmethods__.get(name,None)
00054 if method: return method(self)
00055 raise AttributeError(name)
00056
00057 def _swig_repr(self):
00058 try: strthis = "proxy of " + self.this.__repr__()
00059 except: strthis = ""
00060 return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
00061
00062 try:
00063 _object = object
00064 _newclass = 1
00065 except AttributeError:
00066 class _object : pass
00067 _newclass = 0
00068
00069
00070 class imager(_object):
00071 """Proxy of C++ casac::imager class"""
00072 __swig_setmethods__ = {}
00073 __setattr__ = lambda self, name, value: _swig_setattr(self, imager, name, value)
00074 __swig_getmethods__ = {}
00075 __getattr__ = lambda self, name: _swig_getattr(self, imager, name)
00076 __repr__ = _swig_repr
00077 __swig_setmethods__["_pixels_advise"] = _imager.imager__pixels_advise_set
00078 __swig_getmethods__["_pixels_advise"] = _imager.imager__pixels_advise_get
00079 if _newclass:_pixels_advise = _swig_property(_imager.imager__pixels_advise_get, _imager.imager__pixels_advise_set)
00080 __swig_setmethods__["_cell_advise"] = _imager.imager__cell_advise_set
00081 __swig_getmethods__["_cell_advise"] = _imager.imager__cell_advise_get
00082 if _newclass:_cell_advise = _swig_property(_imager.imager__cell_advise_get, _imager.imager__cell_advise_set)
00083 __swig_setmethods__["_facets_advise"] = _imager.imager__facets_advise_set
00084 __swig_getmethods__["_facets_advise"] = _imager.imager__facets_advise_get
00085 if _newclass:_facets_advise = _swig_property(_imager.imager__facets_advise_get, _imager.imager__facets_advise_set)
00086 __swig_setmethods__["_phasecenter_advise"] = _imager.imager__phasecenter_advise_set
00087 __swig_getmethods__["_phasecenter_advise"] = _imager.imager__phasecenter_advise_get
00088 if _newclass:_phasecenter_advise = _swig_property(_imager.imager__phasecenter_advise_get, _imager.imager__phasecenter_advise_set)
00089 __swig_setmethods__["_bmaj_fitpsf"] = _imager.imager__bmaj_fitpsf_set
00090 __swig_getmethods__["_bmaj_fitpsf"] = _imager.imager__bmaj_fitpsf_get
00091 if _newclass:_bmaj_fitpsf = _swig_property(_imager.imager__bmaj_fitpsf_get, _imager.imager__bmaj_fitpsf_set)
00092 __swig_setmethods__["_bmin_fitpsf"] = _imager.imager__bmin_fitpsf_set
00093 __swig_getmethods__["_bmin_fitpsf"] = _imager.imager__bmin_fitpsf_get
00094 if _newclass:_bmin_fitpsf = _swig_property(_imager.imager__bmin_fitpsf_get, _imager.imager__bmin_fitpsf_set)
00095 __swig_setmethods__["_bpa_fitpsf"] = _imager.imager__bpa_fitpsf_set
00096 __swig_getmethods__["_bpa_fitpsf"] = _imager.imager__bpa_fitpsf_get
00097 if _newclass:_bpa_fitpsf = _swig_property(_imager.imager__bpa_fitpsf_get, _imager.imager__bpa_fitpsf_set)
00098 __swig_setmethods__["_pointsource_sensitivity"] = _imager.imager__pointsource_sensitivity_set
00099 __swig_getmethods__["_pointsource_sensitivity"] = _imager.imager__pointsource_sensitivity_get
00100 if _newclass:_pointsource_sensitivity = _swig_property(_imager.imager__pointsource_sensitivity_get, _imager.imager__pointsource_sensitivity_set)
00101 __swig_setmethods__["_relative_sensitivity"] = _imager.imager__relative_sensitivity_set
00102 __swig_getmethods__["_relative_sensitivity"] = _imager.imager__relative_sensitivity_get
00103 if _newclass:_relative_sensitivity = _swig_property(_imager.imager__relative_sensitivity_get, _imager.imager__relative_sensitivity_set)
00104 __swig_setmethods__["_sumweights_sensitivity"] = _imager.imager__sumweights_sensitivity_set
00105 __swig_getmethods__["_sumweights_sensitivity"] = _imager.imager__sumweights_sensitivity_get
00106 if _newclass:_sumweights_sensitivity = _swig_property(_imager.imager__sumweights_sensitivity_get, _imager.imager__sumweights_sensitivity_set)
00107 def __init__(self):
00108 """__init__(self) -> imager"""
00109 this = _imager.new_imager()
00110 try: self.this.append(this)
00111 except: self.this = this
00112 __swig_destroy__ = _imager.delete_imager
00113 __del__ = lambda self : None;
00114 def advise(self, *args, **kwargs):
00115 """
00116 advise(self, takeadvice=True, amplitudeloss=0.05, fieldofview=initialize_variant("1.0deg"), _pixels=_pixels_advise,
00117 _cell=_cell_advise, _facets=_facets_advise, _phasecenter=_phasecenter_advise) -> bool
00118
00119 Summary
00120 Advise (and optionally use) parameter values
00121
00122 Input Parameters:
00123 takeadvice Use the advised values? true
00124 amplitudeloss Maximum fractional amplitude loss due to faceting 0.05
00125 fieldofview Desired field of view 1.0deg
00126
00127
00128 Output Parameters:
00129 _pixels Number of pixels on a side
00130 _cell Recommended maximum cellsize
00131 _facets Recommended number of facets on one axis
00132 _phasecenter Direction of phase center as a measure
00133
00134 --------------------------------------------------------------------------------
00135
00136 """
00137 return _imager.imager_advise(self, *args, **kwargs)
00138
00139 def advisechansel(self, *args, **kwargs):
00140 """
00141 advisechansel(self, freqstart=1.0e6, freqend=1.1e6, freqstep=100.0, freqframe=string("LSRK"), msname=string(""),
00142 fieldid=0, getfreqrange=False, spwselection=string("")) -> record *
00143
00144 Summary
00145 Advise on spw and chan selection optimal for the image frequency range wanted
00146
00147 Input Parameters:
00148 freqstart Begining of frequency range in Hz 1.0e6
00149 freqend End of frequency range in Hz 1.1e6
00150 freqstep spectral channel resolution of intended image in Hz 100.0
00151 freqframe frame in which frequency is being expressed in other parameters LSRK
00152 msname name of an ms, if empty string it will use the ms's used in selectvis
00153 fieldid fieldid to use when msname is not empty otherwise ignored and field selected in selectvis is used 0
00154 getfreqrange if set then freqrange is returned in the frame requested for the data selected false
00155 spwselection if getfreqrange=True then this is needed to find the range of frequency in the frame requested
00156
00157 --------------------------------------------------------------------------------
00158
00159 """
00160 return _imager.imager_advisechansel(self, *args, **kwargs)
00161
00162 def approximatepsf(self, *args, **kwargs):
00163 """
00164 approximatepsf(self, psf=string(""), async=False) -> bool
00165
00166 Summary
00167 Calculate approximate point spread functions
00168
00169 Input Parameters:
00170 psf Name of output point spread function
00171 async Run asynchronously in the background false
00172
00173 --------------------------------------------------------------------------------
00174
00175 """
00176 return _imager.imager_approximatepsf(self, *args, **kwargs)
00177
00178 def boxmask(self, *args, **kwargs):
00179 """
00180 boxmask(self, mask=string(""), blc=initialize_vector(4,(int)0, (int)0, (int)0, (int)0), trc=std::vector< int >(),
00181 value=1.0) -> bool
00182
00183 Summary
00184 Construct a mask image from blc, trc
00185
00186 Input Parameters:
00187 mask name of mask image
00188 blc Bottom left corner 0 0 0 0
00189 trc Top right corner, should be image shape
00190 value Value to fill in 1.0
00191
00192 --------------------------------------------------------------------------------
00193
00194 """
00195 return _imager.imager_boxmask(self, *args, **kwargs)
00196
00197 def calcuvw(self, *args, **kwargs):
00198 """
00199 calcuvw(self, fields=initialize_vector(1, (int)-1), refcode=string(""), reuse=True) -> bool
00200
00201 Summary
00202 Calculates (u, v, w) coordinates for the ms.
00203
00204 Input Parameters:
00205 fields Field IDs (numbered relative to 0) to operate on. Blank = all. -1
00206 refcode Reference frame to use for the generated (u, v, w)s. WARNING: clean and the im tool ignore the reference frame claimed by the UVW column (it is often mislabelled as ITRF when it is really J2000) and instead assume the (u, v, w)s are in the same frame as the phase tracking center. calcuvw does not yet force the UVW column and field centers to use the same reference frame! Blank = use the phase tracking frame of vis.
00207 reuse Start from the UVWs in vis (True) or calculate them from the antenna positions? true
00208
00209 --------------------------------------------------------------------------------
00210
00211 """
00212 return _imager.imager_calcuvw(self, *args, **kwargs)
00213
00214 def clean(self, *args, **kwargs):
00215 """
00216 clean(self, algorithm=string("clark"), niter=1000, gain=0.1, threshold=initialize_variant("0.0Jy"),
00217 displayprogress=False, model=std::vector< string >(1, ""), keepfixed=initialize_vector(1, (bool)false),
00218 complist=string(""), mask=std::vector< string >(1, ""),
00219 image=std::vector< string >(1, ""), residual=std::vector< string >(1, ""),
00220 psfimage=std::vector< string >(1, ""), interactive=False,
00221 npercycle=100, masktemplate=string(""), async=False) -> record *
00222
00223 Summary
00224 Calculate a deconvolved image with selected clean algorithm
00225
00226 Input Parameters:
00227 algorithm Algorithm to use clark clarkstokes hogbom multiscale mfclark mfclarkstokes csclean csfast mfhogbom mfmultiscale wfclark wfhogbom clark
00228 niter Number of Iterations, set to zero for no CLEANing 1000
00229 gain Loop Gain for CLEANing 0.1
00230 threshold Flux level at which to stop CLEANing 0.0Jy
00231 displayprogress Display the progress of the cleaning? false
00232 model Names of clean model images
00233 keepfixed Keep one or more models fixed false
00234 complist Name of component list
00235 mask Names of mask images used for CLEANing
00236 image Names of restored images
00237 residual Names of residual images
00238 psfimage Names of psfs if they are needed
00239 interactive whether to stop clean and interactively mask false
00240 npercycle If interactive is 'T', then no of iter of clean before stopping, usually a fraction of niter 100
00241 masktemplate If non empty then will use this image to make the mask the first time
00242 async Run asynchronously in the background? false
00243
00244 --------------------------------------------------------------------------------
00245
00246 """
00247 return _imager.imager_clean(self, *args, **kwargs)
00248
00249 def clipimage(self, *args, **kwargs):
00250 """
00251 clipimage(self, image=string(""), threshold=initialize_variant("0.0Jy")) -> bool
00252
00253 Summary
00254 Zero all pixels where Stokes I is below
00255 a threshold
00256
00257 Input Parameters:
00258 image name of image
00259 threshold Threshold 0.0Jy
00260
00261 --------------------------------------------------------------------------------
00262
00263 """
00264 return _imager.imager_clipimage(self, *args, **kwargs)
00265
00266 def clipvis(self, *args, **kwargs):
00267 """
00268 clipvis(self, threshold=initialize_variant("0.0Jy")) -> bool
00269
00270 Summary
00271 Flag visibilities where residual exceeds
00272 a threshold
00273
00274 Input Parameters:
00275 threshold Threshold 0.0Jy
00276
00277 --------------------------------------------------------------------------------
00278
00279 """
00280 return _imager.imager_clipvis(self, *args, **kwargs)
00281
00282 def close(self):
00283 """
00284 close(self) -> bool
00285
00286 Summary
00287 Close the imager tool, with data written on disk, keeping imager process running for future use
00288 --------------------------------------------------------------------------------
00289
00290 """
00291 return _imager.imager_close(self)
00292
00293 def defineimage(self, *args, **kwargs):
00294 """
00295 defineimage(self, nx=128, ny=-1, cellx=initialize_variant("1.0"), celly=initialize_variant(""), stokes=string("I"),
00296 phasecenter=initialize_variant("0"), mode=string("mfs"), nchan=-1,
00297 start=initialize_variant("0"), step=initialize_variant("1"), spw=initialize_vector(1, (int)0),
00298 restfreq=initialize_variant(""), outframe=string("LSRK"),
00299 veltype=string("radio"), facets=1, movingsource=initialize_variant(""),
00300 distance=initialize_variant("0.0")) -> bool
00301
00302 Summary
00303 Set the image parameters for subsequent processing
00304
00305 Input Parameters:
00306 nx Total number of spatial pixels in x 128
00307 ny Total number of spatial pixels in y -1
00308 cellx Cellsize in x (e.g. '1arcsec') 1.0
00309 celly Cellsize in y (e.g. '1arcsec')
00310 stokes Stokes parameters to image (e.g. 'IQUV') IV IQU IQUV I
00311 phasecenter Direction of phase center as a diretion measure or a field id 0
00312 mode Type of processing (velocity =radiovelocity) frequency radiovelocity opticalvelocity truevelocity mfs
00313 nchan Number of channels; a -1 (default) means all the channels as selected in selectvis and combined into one continuum channel -1
00314 start Start channel; A 0-relative channel number of the spwid or a frequency quantity or a velocity quantity or radial velocity measure 0
00315 step Step in channel; integer for number of channels or frequency quantity or velocity quantity or radial velocity measure 1
00316 spw Spectral Window Id (0 relative) that defines center of image 0
00317 restfreq rest frequency to use; default => use the one available in ms
00318 outframe frequency frame of output image (default LSRK, '' => as input ms or LSRK in case of multiple ms's), options are LSRK, LSRD, BARY, GALACTO, LGROUP, CMB LSRK LSRK LSRD BARY GALACTO LGROUP CMB
00319 veltype velocity definition ('radio' or 'optical' or 'relativistic') optical relativistic radio
00320 facets Number of facets on each axis 1
00321 movingsource Name of moving source, e.g planet or moon, to keep fixed in image
00322 distance Distance to object: usually ignore this! (m) 0.0
00323
00324 --------------------------------------------------------------------------------
00325
00326 """
00327 return _imager.imager_defineimage(self, *args, **kwargs)
00328
00329 def done(self):
00330 """
00331 done(self) -> bool
00332
00333 Summary
00334 Terminate the imager process
00335 --------------------------------------------------------------------------------
00336
00337 """
00338 return _imager.imager_done(self)
00339
00340 def drawmask(self, *args, **kwargs):
00341 """
00342 drawmask(self, image=string(""), mask=string(""), niter=0, npercycle=0, threshold=string("0 mJy")) -> record *
00343
00344 Summary
00345 Allows you do draw mask using the viewer
00346
00347 Input Parameters:
00348 image name of template image
00349 mask name of image to save mask in
00350 niter Total number of iteration to display in box; just for display or python packaging 0
00351 npercycle npercycle value to display in box; just for display or python packaging 0
00352 threshold threshold to display in box ; just for display or python packaging 0 mJy
00353
00354 --------------------------------------------------------------------------------
00355
00356 """
00357 return _imager.imager_drawmask(self, *args, **kwargs)
00358
00359 def exprmask(self, *args, **kwargs):
00360 """
00361 exprmask(self, mask=string(""), expr=1.0) -> bool
00362
00363 Summary
00364 Construct a mask image from a LEL expression
00365
00366 Input Parameters:
00367 mask name of mask image
00368 expr Value to set the mask to. Any scalar or LEL expression 1.0
00369
00370 --------------------------------------------------------------------------------
00371
00372 """
00373 return _imager.imager_exprmask(self, *args, **kwargs)
00374
00375 def feather(self, *args, **kwargs):
00376 """
00377 feather(self, image=string(""), highres=string(""), lowres=string(""), lowpsf=string(""), effdishdiam=-1.0,
00378 showplot=False, async=False) -> bool
00379
00380 Summary
00381 Feather together an interferometer and a single dish image
00382 in the Fourier plane
00383
00384 Input Parameters:
00385 image Name of output feathered image
00386 highres Name of high resolution (interferometer) image
00387 lowres Name of low resolution (single dish) image
00388 lowpsf Name of optional low resolution point spread function
00389 effdishdiam Optional new SD dish diameter in m to use in feathering; can be smaller than true dish size -1.0
00390 showplot Plot the feather function false
00391 async Run asynchronously in the background false
00392
00393 --------------------------------------------------------------------------------
00394
00395 """
00396 return _imager.imager_feather(self, *args, **kwargs)
00397
00398 def filter(self, *args, **kwargs):
00399 """
00400 filter(self, type=string("gaussian"), bmaj=initialize_variant("1arcsec"), bmin=initialize_variant("1arcsec"),
00401 bpa=initialize_variant("0deg"), async=False) -> bool
00402
00403 Summary
00404 Apply additional weighting by filtering (u-v taper)
00405
00406 Input Parameters:
00407 type Type of filtering or u-v tapering gaussian
00408 bmaj Major axis of filter 1arcsec
00409 bmin Minor axis of filter 1arcsec
00410 bpa Position angle of filter 0deg
00411 async Run asynchronously in the background false
00412
00413 --------------------------------------------------------------------------------
00414
00415 """
00416 return _imager.imager_filter(self, *args, **kwargs)
00417
00418 def fitpsf(self, *args, **kwargs):
00419 """
00420 fitpsf(self, psf, async=False, _bmaj=_bmaj_fitpsf, _bmin=_bmin_fitpsf, _bpa=_bpa_fitpsf) -> bool
00421
00422 Summary
00423 Fit the point spread function, making psf image first if needed
00424
00425 Input Parameters:
00426 psf Name of input psf
00427 async Run asynchronously in the background false
00428
00429
00430 Output Parameters:
00431 _bmaj Major axis of beam
00432 _bmin Minor axis of beam
00433 _bpa Position angle of beam
00434
00435 --------------------------------------------------------------------------------
00436
00437 """
00438 return _imager.imager_fitpsf(self, *args, **kwargs)
00439
00440 def fixvis(self, *args, **kwargs):
00441 """
00442 fixvis(self, fields=initialize_vector(1, (int)-1), phasedirs=std::vector< string >(1, ""), refcode=string(""),
00443 distances=initialize_vector(1, (double)0.0), datacolumn=string("all")) -> bool
00444
00445 Summary
00446 Performs visibility adjustments.
00447
00448 Input Parameters:
00449 fields Field IDs (numbered relative to 0) to operate on. Blank = all. -1
00450 phasedirs Phase tracking centers for each field in fields, in the same order.
00451 refcode Reference frame to use for the generated UVWs. WARNING: clean and the im tool ignore the reference frame claimed by the UVW column (it is often mislabelled as ITRF when it is really J2000) and instead assume the (u, v, w)s are in the same frame as the phase tracking center. calcuvw does not yet force the UVW column and field centers to use the same reference frame! Blank = use the phase tracking frame of vis.
00452 distances A list of distances (in m) for the fields listed in fields. 0 = infinity. 0.0
00453 datacolumn Which of DATA, MODEL_DATA, and/or CORRECTED_DATA to operate on. Default: 'all'. all
00454
00455 --------------------------------------------------------------------------------
00456
00457 """
00458 return _imager.imager_fixvis(self, *args, **kwargs)
00459
00460 def ft(self, *args, **kwargs):
00461 """
00462 ft(self, model=std::vector< string >(1, ""), complist=string(""), incremental=False, async=False) -> bool
00463
00464 Summary
00465 Fourier transform the specified model and componentlist
00466
00467 Input Parameters:
00468 model Name of image
00469 complist Name of component list
00470 incremental Add to the existing MODEL\_DATA column? false
00471 async Run asynchronously in the background? false
00472
00473 --------------------------------------------------------------------------------
00474
00475 """
00476 return _imager.imager_ft(self, *args, **kwargs)
00477
00478 def getweightgrid(self, *args, **kwargs):
00479 """
00480 getweightgrid(self, type=string("imaging"), wgtimages=std::vector< string >(1, "")) -> variant *
00481
00482 Summary
00483 get the requested weight grids
00484
00485 Input Parameters:
00486 type Type of weight requested (imaging, ftweight) imaging imaging ftweight
00487 wgtimages names of weightimages to save
00488
00489 --------------------------------------------------------------------------------
00490
00491 """
00492 return _imager.imager_getweightgrid(self, *args, **kwargs)
00493
00494 def linearmosaic(self, *args, **kwargs):
00495 """
00496 linearmosaic(self, images=std::vector< string >(1, ""), mosaic=string(""), fluxscale=string(""), sensitivity=string(""),
00497 fieldids=initialize_vector(1, (int)0), usedefaultvp=True,
00498 vptable=string(""), async=False) -> bool
00499
00500 Summary
00501 Make a linear mosaic of several images
00502
00503 Input Parameters:
00504 images Input images to be mosaiced
00505 mosaic Output mosaic image
00506 fluxscale Fluxscale image
00507 sensitivity Sensitivity image
00508 fieldids List of field ids that correspond each of the images,used to center the PB of each image. (0-based list) 0
00509 usedefaultvp Use the default vp type? true
00510 vptable Voltage pattern table from the vpmanager for detailed specification
00511 async Run asynchronously in the background false
00512
00513 --------------------------------------------------------------------------------
00514
00515 """
00516 return _imager.imager_linearmosaic(self, *args, **kwargs)
00517
00518 def make(self, *args, **kwargs):
00519 """
00520 make(self, image=string(""), async=False) -> bool
00521
00522 Summary
00523 Make an empty (i.e. blank) image
00524
00525 Input Parameters:
00526 image name of output image
00527 async Run asynchronously in the background false
00528
00529 --------------------------------------------------------------------------------
00530
00531 """
00532 return _imager.imager_make(self, *args, **kwargs)
00533
00534 def predictcomp(self, *args, **kwargs):
00535 """
00536 predictcomp(self, objname=string(""), standard=string(""), epoch=initialize_variant("55555.0d"), freqs=initialize_vector(1,(double)1.0e11),
00537 pfx=string("predictcomp")) -> string
00538
00539 Summary
00540 Make a component list for a known object
00541
00542 Input Parameters:
00543 objname Name of the object
00544 standard Name of the flux standard
00545 epoch Time to use, as an epoch measure, e.g. me.epoch('UTC', '55555d'), for Solar System objects 55555.0d epoch measure
00546 freqs The frequencies to use, in Hz 1.0e11
00547 pfx Prefix for the name of the component list predictcomp
00548
00549 --------------------------------------------------------------------------------
00550
00551 """
00552 return _imager.imager_predictcomp(self, *args, **kwargs)
00553
00554 def makeimage(self, *args, **kwargs):
00555 """
00556 makeimage(self, type=string("observed"), image=string(""), compleximage=string(""), verbose=True,
00557 async=False) -> bool
00558
00559 Summary
00560 Calculate images by gridding, etc.
00561
00562 Input Parameters:
00563 type Type of output image observed
00564 image Name of output image
00565 compleximage Name of output complex image
00566 verbose Report things like the center frequency to the logger true
00567 async Run asynchronously in the background false
00568
00569 --------------------------------------------------------------------------------
00570
00571 """
00572 return _imager.imager_makeimage(self, *args, **kwargs)
00573
00574 def makemodelfromsd(self, *args, **kwargs):
00575 """
00576 makemodelfromsd(self, sdimage=string(""), modelimage=string(""), sdpsf=string(""), maskimage=string("")) -> bool
00577
00578 Summary
00579 Make an initial model image from a
00580 Single Dish image
00581
00582 Input Parameters:
00583 sdimage Single Dish image
00584 modelimage Name of output image to be used as model
00585 sdpsf PSF of Single Dish if needed
00586 maskimage mask image
00587
00588 --------------------------------------------------------------------------------
00589
00590 """
00591 return _imager.imager_makemodelfromsd(self, *args, **kwargs)
00592
00593 def mask(self, *args, **kwargs):
00594 """
00595 mask(self, image=string(""), mask=string(""), threshold=initialize_variant("0.0Jy"), async=False) -> bool
00596
00597 Summary
00598 Construct a mask image by thresholding an image
00599
00600 Input Parameters:
00601 image name of template image
00602 mask name of mask image
00603 threshold threshold for mask 0.0Jy
00604 async Run asynchronously in the background false
00605
00606 --------------------------------------------------------------------------------
00607
00608 """
00609 return _imager.imager_mask(self, *args, **kwargs)
00610
00611 def mem(self, *args, **kwargs):
00612 """
00613 mem(self, algorithm=string("entropy"), niter=20, sigma=initialize_variant("0.001Jy"), targetflux=initialize_variant("1.0Jy"),
00614 constrainflux=False, displayprogress=False,
00615 model=std::vector< string >(1, ""), keepfixed=initialize_vector(1, (bool)false),
00616 complist=string(""), prior=std::vector< string >(1, ""), mask=std::vector< string >(1, ""),
00617 image=std::vector< string >(1, ""), residual=std::vector< string >(1, ""),
00618 async=False) -> bool
00619
00620 Summary
00621 Calculate a deconvolved image with selected mem (maximum entropy) algorithm
00622
00623 Input Parameters:
00624 algorithm Algorithm to use entropy emptiness mfentropy mfemptiness entropy entropy
00625 niter Number of Iterations 20
00626 sigma Image sigma to try to achieve 0.001Jy
00627 targetflux Target flux for final image 1.0Jy
00628 constrainflux Constrain image to match target flux? else targetflux used only to initialize model false
00629 displayprogress Display the progress of the cleaning? false
00630 model Names of model images
00631 keepfixed Keep model fixed false
00632 complist Name of component list
00633 prior Names of mem prior images
00634 mask Names of mask images (0=>no emission, 1=>emission permitted
00635 image Names of restored images
00636 residual Names of residual images
00637 async Run asynchronously in the background? false
00638
00639 --------------------------------------------------------------------------------
00640
00641 """
00642 return _imager.imager_mem(self, *args, **kwargs)
00643
00644 def nnls(self, *args, **kwargs):
00645 """
00646 nnls(self, model=std::vector< string >(1, ""), keepfixed=initialize_vector(1, (bool)false),
00647 complist=string(""), niter=0, tolerance=1e-06, fluxmask=std::vector< string >(1, ""),
00648 datamask=std::vector< string >(1, ""), image=std::vector< string >(1, ""),
00649 residual=std::vector< string >(1, ""), async=False) -> bool
00650
00651 Summary
00652 Calculate a deconvolved image using the
00653 NNLS algorithm
00654
00655 Input Parameters:
00656 model Name of image
00657 keepfixed Keep model fixed false
00658 complist Name of component list
00659 niter Number of Iterations, set to zero for no NNLS 0
00660 tolerance Tolerance for solution 1e-06
00661 fluxmask Name of mask for allowed flux
00662 datamask Name of mask for constraint pixels in dirty image
00663 image Names of restored images
00664 residual Names of restored images
00665 async Run asynchronously in the background false
00666
00667 --------------------------------------------------------------------------------
00668
00669 """
00670 return _imager.imager_nnls(self, *args, **kwargs)
00671
00672 def open(self, *args, **kwargs):
00673 """
00674 open(self, thems=string(""), compress=False, usescratch=False) -> bool
00675
00676 Summary
00677 Open a new MeasurementSet, for processing, closing current MeasurementSet
00678
00679 Input Parameters:
00680 thems New MeasurementSet to be processed
00681 compress Compress calibration columns? false
00682 usescratch If true: Imager will use corrected data column and make scratch columns of they donot exist false
00683
00684 --------------------------------------------------------------------------------
00685
00686 """
00687 return _imager.imager_open(self, *args, **kwargs)
00688
00689 def pb(self, *args, **kwargs):
00690 """
00691 pb(self, inimage=string(""), outimage=string(""), incomps=string(""), outcomps=string(""),
00692 operation=string("apply"), pointingcenter=string("N. pole"), parangle=initialize_variant("0.0deg"),
00693 pborvp=string("pb"), async=False) -> bool
00694
00695 Summary
00696 Applies or corrects for a primary beam
00697
00698 Input Parameters:
00699 inimage Input image to apply beam to
00700 outimage Output image after beam is applied
00701 incomps Input Componentlist table name
00702 outcomps Output Componentlist table name
00703 operation Operation correct apply
00704 pointingcenter Pointing center for primary beam application false N. pole
00705 parangle Parallactic angle for calculation 0.0deg
00706 pborvp Primary Beam or Voltage Pattern vb pb
00707 async Run asynchronously in the background false
00708
00709 --------------------------------------------------------------------------------
00710
00711 """
00712 return _imager.imager_pb(self, *args, **kwargs)
00713
00714 def plotsummary(self):
00715 """
00716 plotsummary(self) -> bool
00717
00718 Summary
00719 Plot a summary of field and spectral window ids
00720 --------------------------------------------------------------------------------
00721
00722 """
00723 return _imager.imager_plotsummary(self)
00724
00725 def plotuv(self, rotate=False):
00726 """
00727 plotuv(self, rotate=False) -> bool
00728
00729 Summary
00730 Plot the uv coverage
00731
00732 Input Parameters:
00733 rotate Rotate uvw coordinates to specified phase center? false
00734
00735 --------------------------------------------------------------------------------
00736
00737 """
00738 return _imager.imager_plotuv(self, rotate)
00739
00740 def plotvis(self, *args, **kwargs):
00741 """
00742 plotvis(self, type=string("all"), increment=1) -> bool
00743
00744 Summary
00745 Plot the visibility amplitudes as a function of u-v radius (also, see visplot tool
00746
00747 Input Parameters:
00748 type Type of plot: can contain all, observed, corrected, model, residual all observed corrected model residual all
00749 increment Increment in points to plot 1
00750
00751 --------------------------------------------------------------------------------
00752
00753 """
00754 return _imager.imager_plotvis(self, *args, **kwargs)
00755
00756 def plotweights(self, gridded=False, increment=1):
00757 """
00758 plotweights(self, gridded=False, increment=1) -> bool
00759
00760 Summary
00761 Plot the visibility weights as a function of u-v radius
00762
00763 Input Parameters:
00764 gridded Do gridded plot? false
00765 increment Increment in points to plot 1
00766
00767 --------------------------------------------------------------------------------
00768
00769 """
00770 return _imager.imager_plotweights(self, gridded, increment)
00771
00772 def regionmask(self, *args, **kwargs):
00773 """
00774 regionmask(self, mask=string(""), region=initialize_record(""), boxes=initialize_variant(""), circles=initialize_variant(""),
00775 value=1.0) -> bool
00776
00777 Summary
00778 Construct a mask image from a region
00779
00780 Input Parameters:
00781 mask name of mask image
00782 region Region record usually from regionmanager unset
00783 boxes list of 4 elements lists e.g [[xblc1, yblc1, xtrc1, ytrc1], [[xblc2, yblc2, xtrc2, ytrc2]]
00784 circles list of 3 elements lists e.g [[rad0, xcen0, ycen0], [rad1,xcen1, ycen1], .....]
00785 value Value to set the mask to 1.0
00786
00787 --------------------------------------------------------------------------------
00788
00789 """
00790 return _imager.imager_regionmask(self, *args, **kwargs)
00791
00792 def regiontoimagemask(self, *args, **kwargs):
00793 """
00794 regiontoimagemask(self, mask=string(""), region=initialize_record(""), boxes=initialize_variant(""), circles=initialize_variant(""),
00795 value=1.0) -> bool
00796
00797 Summary
00798 union a mask image with various regions
00799
00800 Input Parameters:
00801 mask name of mask image
00802 region Region record usually from regionmanager unset
00803 boxes list of 4 elements lists e.g [[xblc1, yblc1, xtrc1, ytrc1], [[xblc2, yblc2, xtrc2, ytrc2]]
00804 circles list of 3 elements lists e.g [[rad0, xcen0, ycen0], [rad1,xcen1, ycen1], .....]
00805 value Value to set the mask to 1.0
00806
00807 --------------------------------------------------------------------------------
00808
00809 """
00810 return _imager.imager_regiontoimagemask(self, *args, **kwargs)
00811
00812 def residual(self, *args, **kwargs):
00813 """
00814 residual(self, model=std::vector< string >(1, ""), complist=string(""), image=std::vector< string >(1, ""),
00815 async=False) -> bool
00816
00817 Summary
00818 Calculate the residual image with respect to current model and component list
00819
00820 Input Parameters:
00821 model Names of input models
00822 complist Name of component list
00823 image Names of output residual images
00824 async Run asynchronously in the background false
00825
00826 --------------------------------------------------------------------------------
00827
00828 """
00829 return _imager.imager_residual(self, *args, **kwargs)
00830
00831 def restore(self, *args, **kwargs):
00832 """
00833 restore(self, model=std::vector< string >(1, ""), complist=string(""), image=std::vector< string >(1, ""),
00834 residual=std::vector< string >(1, ""), async=False) -> bool
00835
00836 Summary
00837 Calculate the restored image with restored model, component list, and residuals
00838
00839 Input Parameters:
00840 model Names of input model
00841 complist Name of component list
00842 image Names of output restored images
00843 residual Names of residual images
00844 async Run asynchronously in the background false
00845
00846 --------------------------------------------------------------------------------
00847
00848 """
00849 return _imager.imager_restore(self, *args, **kwargs)
00850
00851 def updateresidual(self, *args, **kwargs):
00852 """
00853 updateresidual(self, model=std::vector< string >(1, ""), complist=string(""), image=std::vector< string >(1, ""),
00854 residual=std::vector< string >(1, "")) -> bool
00855
00856 Summary
00857 Calculate the residual and restored images with new modified model, component list,
00858
00859 Input Parameters:
00860 model Names of input model
00861 complist Name of component list
00862 image Names of output restored images
00863 residual Names of residual images
00864
00865 --------------------------------------------------------------------------------
00866
00867 """
00868 return _imager.imager_updateresidual(self, *args, **kwargs)
00869
00870 def sensitivity(self, *args, **kwargs):
00871 """
00872 sensitivity(self, async=False, _pointsource=_pointsource_sensitivity, _relative=_relative_sensitivity,
00873 _sumweights=_sumweights_sensitivity) -> bool
00874
00875 Summary
00876 Calculate rms sensitivity
00877
00878 Input Parameters:
00879 async Run asynchronously in the background false
00880
00881
00882 Output Parameters:
00883 _pointsource Calculated point source sensitivity (Jy/beam)
00884 _relative Calculated relative sensitivity
00885 _sumweights Calculated sum of weights
00886
00887 --------------------------------------------------------------------------------
00888
00889 """
00890 return _imager.imager_sensitivity(self, *args, **kwargs)
00891
00892 def setbeam(self, *args, **kwargs):
00893 """
00894 setbeam(self, bmaj=initialize_variant("1.0arcsec"), bmin=initialize_variant("1.0arcsec"), bpa=initialize_variant("0deg"),
00895 async=False) -> bool
00896
00897 Summary
00898 Set the beam parameters for clean restoration
00899
00900 Input Parameters:
00901 bmaj Major axis of beam 1.0arcsec
00902 bmin Minor axis of beam 1.0arcsec
00903 bpa Position angle of beam 0deg
00904 async Run asynchronously in the background false
00905
00906 --------------------------------------------------------------------------------
00907
00908 """
00909 return _imager.imager_setbeam(self, *args, **kwargs)
00910
00911 def selectvis(self, *args, **kwargs):
00912 """
00913 selectvis(self, vis=string(""), nchan=initialize_vector(1, (int)-1), start=initialize_vector(1, (int)0),
00914 step=initialize_vector(1, (int)1), spw=initialize_variant("-1"), field=initialize_variant("-1"),
00915 baseline=initialize_variant("-1"), time=initialize_variant(""),
00916 scan=initialize_variant(""), observation=initialize_variant(""),
00917 uvrange=initialize_variant(""), taql=string(""), usescratch=False,
00918 datainmemory=False, writeaccess=True) -> bool
00919
00920 Summary
00921 Select visibilities for subsequent processing
00922
00923 Input Parameters:
00924 vis Measurementset for which this selection applies; an empty string '' implies that it is to be applied in ms used in open
00925 nchan Number of channels to select -1
00926 start Start channels (0-relative) 0
00927 step Step in channel number 1
00928 spw Spectral Window Ids (0 relative) to select; -1 interpreted as all -1
00929 field Field Ids (0 relative) or Field names (msselection syntax and wilcards are used) to select -1
00930 baseline Antenna Ids (0 relative) or Antenna names (msselection syntax and wilcards are used) to select -1
00931 time Limit data selected to be within a given time range. The syntax is defined in the msselection link
00932 scan Limit data selected on scan numbers. The syntax is defined in the msselection link
00933 observation Limit data using observation IDs. The syntax is defined in the msselection link
00934 uvrange Limit data selected on uv distance. The syntax is defined in the msselection link
00935 taql For the TAQL experts, flexible data selection using the TAQL syntax
00936 usescratch If True: imager will use CORRECTED_DATA column and will make scratch columns and store Model visibilities after deconvolution false
00937 datainmemory If True: imager will load the selected ms memory; useful if imaging a few channels that fit in memory false
00938 writeaccess If False: imager will open the ms in readmode; useful for multiple process access to the MS true
00939
00940 --------------------------------------------------------------------------------
00941
00942 """
00943 return _imager.imager_selectvis(self, *args, **kwargs)
00944
00945 def setjy(self, *args, **kwargs):
00946 """
00947 setjy(self, field=initialize_variant(""), spw=initialize_variant(""), modimage=string(""), fluxdensity=initialize_vector(4,(double)0.0, (double)0.0, (double)0.0, (double)0.0),
00948 standard=string("SOURCE"),
00949 scalebychan=False, spix=0.0, reffreq=initialize_variant("1GHz"),
00950 time=string(""), scan=string(""), observation=string("")) -> bool
00951
00952 Summary
00953 Compute the model visibility for a specified source flux density
00954
00955 Input Parameters:
00956 field Field Id (0-relative) or name
00957 spw Spectral Window Id. (0-relative)
00958 modimage A model image
00959 fluxdensity Specified flux density (I,Q,U,V) in Jy (lookup the value; use 1.0 if not found) 0.0 0.0 0.0 0.0
00960 standard Flux density standard Baars Perley 90 Perley-Taylor 95 Perley-Taylor 99 Perley-Butler 2010 SOURCE
00961 scalebychan Do the flux scaling on a per channel basis else on a spw basis. Effectively True if fluxdensity is specified. false
00962 spix Spectral index for fluxdensity. S = fluxdensity * (freq/reffreq)**spix 0.0
00963 reffreq Reference frequency for spix. 1GHz
00964 time Time range to operate on
00965 scan Scan(s) to operate on
00966 observation Observation ID(s) to operate on
00967
00968 --------------------------------------------------------------------------------
00969
00970 """
00971 return _imager.imager_setjy(self, *args, **kwargs)
00972
00973 def ssoflux(self):
00974 """
00975 ssoflux(self) -> bool
00976
00977 Summary
00978 Use setjy instead.
00979 --------------------------------------------------------------------------------
00980
00981 """
00982 return _imager.imager_ssoflux(self)
00983
00984 def setmfcontrol(self, *args, **kwargs):
00985 """
00986 setmfcontrol(self, cyclefactor=1.5, cyclespeedup=-1, cyclemaxpsffraction=0.8, stoplargenegatives=2,
00987 stoppointmode=-1, minpb=0.1, scaletype=string("NONE"), constpb=0.4, fluxscale=std::vector< string >(1, ""),
00988 flatnoise=True) -> bool
00989
00990 Summary
00991 Set various cycle control parameters for
00992 multi-field and wide-field imageing.
00993
00994 Input Parameters:
00995 cyclefactor Cycle threshold = max_resid * min(cyclemaxpsffraction, this * max_sidelobe) 1.5
00996 cyclespeedup Cycle threshold doubles in this number of iterations -1
00997 cyclemaxpsffraction Cycle threshold = max_resid * min(this, cyclefactor * max_sidelobe) 0.8
00998 stoplargenegatives Stop the multiscale cycle for the first n cycles when a negative comp is found on the largest scale 2
00999 stoppointmode Stop multiscale altogether if the smallest scale recieves this many consecutive components -1
01000 minpb Minimum PB level to use 0.1
01001 scaletype Image plane flux scale type SAULT NONE NONE
01002 constpb In Sault weighting the flux scale is constant above this PB level 0.4
01003 fluxscale Names of flux scale images for mosaicing
01004 flatnoise Set to false if clean component search is to be done in an optimal signal/noise residual image if true will clean in a constant noise image true
01005
01006 --------------------------------------------------------------------------------
01007
01008 """
01009 return _imager.imager_setmfcontrol(self, *args, **kwargs)
01010
01011 def setoptions(self, *args, **kwargs):
01012 """
01013 setoptions(self, ftmachine=string("ft"), cache=-1, tile=16, gridfunction=string("SF"), location=initialize_variant(""),
01014 padding=1.0, freqinterp=string("nearest"), wprojplanes=1,
01015 epjtablename=string(""), applypointingoffsets=False, dopbgriddingcorrections=True,
01016 cfcachedirname=string(""), pastep=1.0, pblimit=0.05, imagetilevol=0,
01017 singleprecisiononly=False, numthreads=-1, psterm=True, aterm=True, wbawp=False) -> bool
01018
01019 Summary
01020 Set some general options for subsequent processing
01021
01022 Input Parameters:
01023 ftmachine Fourier transform machine ft ft sd both wproject mosaic
01024 cache Size of gridding cache in complex pixels; default use half the memory available on computer -1
01025 tile Size of a gridding tile in pixels (in 1 dimension) 16
01026 gridfunction Gridding function SF SF BOX PB GAUSS GJINC
01027 location Location used in phase rotations
01028 padding Padding factor in image plane (>=1.0) 1.0
01029 freqinterp interpolation mode in frequency;options:- nearest, linear, cubic, spline nearest nearest linear cubic spline
01030 wprojplanes No of gridding convolution functions used in wproject-ft machine 1
01031 epjtablename E-Jones table name. This is used if applypointingoffsets is set to True.
01032 applypointingoffsets Apply pointing offset corrections during deconvolution. false
01033 dopbgriddingcorrections Correct for PB gridding before prediction of visibilities. This should be True when doing deconvolution. This should be False when predicting visibilities for model sky with no primary beam attenuation in the model. true
01034 cfcachedirname Directory where convolution functions are to be (or are being ) cached on the disk.
01035 pastep The number of steps in Parallactic Angle used to compute the average power pattern. Since a linear interpolation is used to interpolate convolution functions during gridding, this can be different from PA increment to compute new convolution functions. This parameter is however not used yet. 1.0
01036 pblimit Primary beam limit when using PBWProjection 0.05
01037 imagetilevol Tile size on for image on disk (in pixel, multiply by 4 to get the byte size). It is safe to leave this as default, meant for usage on filesystem like Lustre, the default implies 32x32x4x32 tile shape 0
01038 singleprecisiononly Set this value to True to force single precision all the time. Otherwise imager may use double precision gridding (ft and wproject only for now) when it can and deems it fit. Setting to True can be handy on low memory machines false
01039 numthreads Limit the number of threads used in this run (openmp enabled only) -1
01040 psterm Switch-on the PS-Term? true
01041 aterm Switch-on the A-Term? true
01042 wbawp Trigger the WB A-Projection algorithm? false
01043
01044 --------------------------------------------------------------------------------
01045
01046 """
01047 return _imager.imager_setoptions(self, *args, **kwargs)
01048
01049 def setscales(self, *args, **kwargs):
01050 """
01051 setscales(self, scalemethod=string("nscales"), nscales=5, uservector=initialize_vector(3,(double)0.0, (double)3.0, (double)10.0)) -> bool
01052
01053 Summary
01054 Set the scale sizes for MultiScale Clean
01055
01056 Input Parameters:
01057 scalemethod Method by which scales are set nscales uservector nscales
01058 nscales Number of scales 5
01059 uservector Vector of scale sizes in pixels to use, defaults should be 0,3,10 0.0 3.0 10.0
01060
01061 --------------------------------------------------------------------------------
01062
01063 """
01064 return _imager.imager_setscales(self, *args, **kwargs)
01065
01066 def setsmallscalebias(self, inbias=0.6):
01067 """
01068 setsmallscalebias(self, inbias=0.6) -> bool
01069
01070 Summary
01071 Set bias toward smaller scales for MultiScale Clean
01072
01073 Input Parameters:
01074 inbias small scale bias 0.6
01075
01076 --------------------------------------------------------------------------------
01077
01078 """
01079 return _imager.imager_setsmallscalebias(self, inbias)
01080
01081 def settaylorterms(self, ntaylorterms=2, reffreq=0.0):
01082 """
01083 settaylorterms(self, ntaylorterms=2, reffreq=0.0) -> bool
01084
01085 Summary
01086 Set the number of Taylor series terms for Multi-Frequency Clean
01087
01088 Input Parameters:
01089 ntaylorterms Number of Taylor terms 2
01090 reffreq Reference Frequency 0.0
01091
01092 --------------------------------------------------------------------------------
01093
01094 """
01095 return _imager.imager_settaylorterms(self, ntaylorterms, reffreq)
01096
01097 def setsdoptions(self, *args, **kwargs):
01098 """
01099 setsdoptions(self, scale=1.0, weight=1.0, convsupport=-1, pointingcolumntouse=string("DIRECTION"), truncate=initialize_variant("-1pixel"),
01100 gwidth=initialize_variant("-1pixel"),
01101 jwidth=initialize_variant("-1pixel")) -> bool
01102
01103 Summary
01104 Set some options for single dish processing
01105
01106 Input Parameters:
01107 scale Scaling applied to single dish data 1.0
01108 weight Weights applied to single dish data 1.0
01109 convsupport number of pixel for convolution support -1
01110 pointingcolumntouse Which Pointing Table column to use to get direction DIRECTION DIRECTION TARGET ENCODER POINTING_OFFSET SOURCE_OFFSET
01111 truncate truncation radius (effective only for 'GAUSS' or 'GJINC') -1pixel
01112 gwidth radius of half maximum for gaussian (effective only for 'GAUSS' or 'GJINC') -1pixel
01113 jwidth c-parameter for jinc function (effective only for 'GJINC') -1pixel
01114
01115 --------------------------------------------------------------------------------
01116
01117 """
01118 return _imager.imager_setsdoptions(self, *args, **kwargs)
01119
01120 def setvp(self, *args, **kwargs):
01121 """
01122 setvp(self, dovp=False, usedefaultvp=True, vptable=string(""), dosquint=False, parangleinc=initialize_variant("360deg"),
01123 skyposthreshold=initialize_variant("180deg"), telescope=string(""),
01124 verbose=True) -> bool
01125
01126 Summary
01127 Set the voltage pattern model for subsequent processing
01128
01129 Input Parameters:
01130 dovp Do voltage pattern (ie, primary beam) correction false
01131 usedefaultvp Look up the default VP for this telescope and frequency? true
01132 vptable If usedefaultvp is False, provide a VP Table made with vpmanager
01133 dosquint Activate the beam squint in the VP model false
01134 parangleinc Parallactice angle increment for squint application 360deg
01135 skyposthreshold Sky position threshold 180deg
01136 telescope Which default telescope to use; if empty use the one in encoded in MS
01137 verbose If false, suppress some messages from being sent to the logger. true
01138
01139 --------------------------------------------------------------------------------
01140
01141 """
01142 return _imager.imager_setvp(self, *args, **kwargs)
01143
01144 def setweightgrid(self, *args, **kwargs):
01145 """
01146 setweightgrid(self, weight=initialize_variant(""), type=string("imaging")) -> bool
01147
01148 Summary
01149 set the requested weight grids
01150
01151 Input Parameters:
01152 weight Numeric array. Required input.
01153 type Type of weight requested imaging
01154
01155 --------------------------------------------------------------------------------
01156
01157 """
01158 return _imager.imager_setweightgrid(self, *args, **kwargs)
01159
01160 def smooth(self, *args, **kwargs):
01161 """
01162 smooth(self, model=std::vector< string >(1, ""), image=std::vector< string >(1, ""), usefit=True,
01163 bmaj=initialize_variant("5.arcsec"), bmin=initialize_variant("5.arcsec"),
01164 bpa=initialize_variant("0deg"), normalize=True, async=False) -> bool
01165
01166 Summary
01167 Calculate an image smoothed with a Gaussian beam
01168
01169 Input Parameters:
01170 model Name of input model
01171 image Name of output smoothed images
01172 usefit Use the fitted value (rather than that specified true
01173 bmaj Major axis of beam 5.arcsec
01174 bmin Minor axis of beam 5.arcsec
01175 bpa Position angle of beam 0deg
01176 normalize Normalize volume of psf to unity true
01177 async Run asynchronously in the background false
01178
01179 --------------------------------------------------------------------------------
01180
01181 """
01182 return _imager.imager_smooth(self, *args, **kwargs)
01183
01184 def stop(self):
01185 """
01186 stop(self) -> bool
01187
01188 Summary
01189 stop the currently executing function asap
01190 --------------------------------------------------------------------------------
01191
01192 """
01193 return _imager.imager_stop(self)
01194
01195 def summary(self):
01196 """
01197 summary(self) -> bool
01198
01199 Summary
01200 Summarize the current state of the imager tool
01201 --------------------------------------------------------------------------------
01202
01203 """
01204 return _imager.imager_summary(self)
01205
01206 def uvrange(self, uvmin=0.0, uvmax=0.0):
01207 """
01208 uvrange(self, uvmin=0.0, uvmax=0.0) -> bool
01209
01210 Summary
01211 Select data within the limit of a given range
01212
01213 Input Parameters:
01214 uvmin Minimum uv distance allowed (wavelengths) 0.0
01215 uvmax Maximum uv distance allowed (wavelengths) 0.0
01216
01217 --------------------------------------------------------------------------------
01218
01219 """
01220 return _imager.imager_uvrange(self, uvmin, uvmax)
01221
01222 def weight(self, *args, **kwargs):
01223 """
01224 weight(self, type=string("natural"), rmode=string("none"), noise=initialize_variant("0.0Jy"),
01225 robust=0.0, fieldofview=initialize_variant("0.0arcsec"), npixels=0, mosaic=False,
01226 async=False) -> bool
01227
01228 Summary
01229 Apply additional weighting to the visibility weights
01230
01231 Input Parameters:
01232 type Type of weighting uniform natural briggs radial natural
01233 rmode Mode of briggs weighting norm abs none
01234 noise Noise used in absolute briggs weighting 0.0Jy
01235 robust Parameter in briggs weighting 0.0
01236 fieldofview Field of view for uniform weighting 0.0arcsec
01237 npixels Number of pixels in the u and v directions 0
01238 mosaic Individually weight the fields of a mosaic false
01239 async Run asynchronously in the background false
01240
01241 --------------------------------------------------------------------------------
01242
01243 """
01244 return _imager.imager_weight(self, *args, **kwargs)
01245
01246 imager_swigregister = _imager.imager_swigregister
01247 imager_swigregister(imager)
01248 cvar = _imager.cvar
01249
01250
01251
01252