casa  $Rev:20696$
 All Classes Namespaces Files Functions Variables
imager.py
Go to the documentation of this file.
00001 # This file was automatically generated by SWIG (http://www.swig.org).
00002 # Version 2.0.5
00003 #
00004 # Do not make changes to this file unless you know what you are doing--modify
00005 # the SWIG interface file instead.
00006 
00007 
00008 
00009 from sys import version_info
00010 if version_info >= (2,6,0):
00011     def swig_import_helper():
00012         from os.path import dirname
00013         import imp
00014         fp = None
00015         try:
00016             fp, pathname, description = imp.find_module('_imager', [dirname(__file__)])
00017         except ImportError:
00018             import _imager
00019             return _imager
00020         if fp is not None:
00021             try:
00022                 _mod = imp.load_module('_imager', fp, pathname, description)
00023             finally:
00024                 fp.close()
00025             return _mod
00026     _imager = swig_import_helper()
00027     del swig_import_helper
00028 else:
00029     import _imager
00030 del version_info
00031 try:
00032     _swig_property = property
00033 except NameError:
00034     pass # Python < 2.2 doesn't have 'property'.
00035 def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
00036     if (name == "thisown"): return self.this.own(value)
00037     if (name == "this"):
00038         if type(value).__name__ == 'SwigPyObject':
00039             self.__dict__[name] = value
00040             return
00041     method = class_type.__swig_setmethods__.get(name,None)
00042     if method: return method(self,value)
00043     if (not static):
00044         self.__dict__[name] = value
00045     else:
00046         raise AttributeError("You cannot add attributes to %s" % self)
00047 
00048 def _swig_setattr(self,class_type,name,value):
00049     return _swig_setattr_nondynamic(self,class_type,name,value,0)
00050 
00051 def _swig_getattr(self,class_type,name):
00052     if (name == "thisown"): return self.this.own()
00053     method = class_type.__swig_getmethods__.get(name,None)
00054     if method: return method(self)
00055     raise AttributeError(name)
00056 
00057 def _swig_repr(self):
00058     try: strthis = "proxy of " + self.this.__repr__()
00059     except: strthis = ""
00060     return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
00061 
00062 try:
00063     _object = object
00064     _newclass = 1
00065 except AttributeError:
00066     class _object : pass
00067     _newclass = 0
00068 
00069 
00070 class imager(_object):
00071     """Proxy of C++ casac::imager class"""
00072     __swig_setmethods__ = {}
00073     __setattr__ = lambda self, name, value: _swig_setattr(self, imager, name, value)
00074     __swig_getmethods__ = {}
00075     __getattr__ = lambda self, name: _swig_getattr(self, imager, name)
00076     __repr__ = _swig_repr
00077     __swig_setmethods__["_pixels_advise"] = _imager.imager__pixels_advise_set
00078     __swig_getmethods__["_pixels_advise"] = _imager.imager__pixels_advise_get
00079     if _newclass:_pixels_advise = _swig_property(_imager.imager__pixels_advise_get, _imager.imager__pixels_advise_set)
00080     __swig_setmethods__["_cell_advise"] = _imager.imager__cell_advise_set
00081     __swig_getmethods__["_cell_advise"] = _imager.imager__cell_advise_get
00082     if _newclass:_cell_advise = _swig_property(_imager.imager__cell_advise_get, _imager.imager__cell_advise_set)
00083     __swig_setmethods__["_facets_advise"] = _imager.imager__facets_advise_set
00084     __swig_getmethods__["_facets_advise"] = _imager.imager__facets_advise_get
00085     if _newclass:_facets_advise = _swig_property(_imager.imager__facets_advise_get, _imager.imager__facets_advise_set)
00086     __swig_setmethods__["_phasecenter_advise"] = _imager.imager__phasecenter_advise_set
00087     __swig_getmethods__["_phasecenter_advise"] = _imager.imager__phasecenter_advise_get
00088     if _newclass:_phasecenter_advise = _swig_property(_imager.imager__phasecenter_advise_get, _imager.imager__phasecenter_advise_set)
00089     __swig_setmethods__["_bmaj_fitpsf"] = _imager.imager__bmaj_fitpsf_set
00090     __swig_getmethods__["_bmaj_fitpsf"] = _imager.imager__bmaj_fitpsf_get
00091     if _newclass:_bmaj_fitpsf = _swig_property(_imager.imager__bmaj_fitpsf_get, _imager.imager__bmaj_fitpsf_set)
00092     __swig_setmethods__["_bmin_fitpsf"] = _imager.imager__bmin_fitpsf_set
00093     __swig_getmethods__["_bmin_fitpsf"] = _imager.imager__bmin_fitpsf_get
00094     if _newclass:_bmin_fitpsf = _swig_property(_imager.imager__bmin_fitpsf_get, _imager.imager__bmin_fitpsf_set)
00095     __swig_setmethods__["_bpa_fitpsf"] = _imager.imager__bpa_fitpsf_set
00096     __swig_getmethods__["_bpa_fitpsf"] = _imager.imager__bpa_fitpsf_get
00097     if _newclass:_bpa_fitpsf = _swig_property(_imager.imager__bpa_fitpsf_get, _imager.imager__bpa_fitpsf_set)
00098     __swig_setmethods__["_pointsource_sensitivity"] = _imager.imager__pointsource_sensitivity_set
00099     __swig_getmethods__["_pointsource_sensitivity"] = _imager.imager__pointsource_sensitivity_get
00100     if _newclass:_pointsource_sensitivity = _swig_property(_imager.imager__pointsource_sensitivity_get, _imager.imager__pointsource_sensitivity_set)
00101     __swig_setmethods__["_relative_sensitivity"] = _imager.imager__relative_sensitivity_set
00102     __swig_getmethods__["_relative_sensitivity"] = _imager.imager__relative_sensitivity_get
00103     if _newclass:_relative_sensitivity = _swig_property(_imager.imager__relative_sensitivity_get, _imager.imager__relative_sensitivity_set)
00104     __swig_setmethods__["_sumweights_sensitivity"] = _imager.imager__sumweights_sensitivity_set
00105     __swig_getmethods__["_sumweights_sensitivity"] = _imager.imager__sumweights_sensitivity_get
00106     if _newclass:_sumweights_sensitivity = _swig_property(_imager.imager__sumweights_sensitivity_get, _imager.imager__sumweights_sensitivity_set)
00107     def __init__(self): 
00108         """__init__(self) -> imager"""
00109         this = _imager.new_imager()
00110         try: self.this.append(this)
00111         except: self.this = this
00112     __swig_destroy__ = _imager.delete_imager
00113     __del__ = lambda self : None;
00114     def advise(self, *args, **kwargs):
00115         """
00116         advise(self, takeadvice=True, amplitudeloss=0.05, fieldofview=initialize_variant("1.0deg"), _pixels=_pixels_advise, 
00117             _cell=_cell_advise, _facets=_facets_advise, _phasecenter=_phasecenter_advise) -> bool
00118 
00119         Summary
00120                 Advise (and optionally use) parameter values
00121 
00122         Input Parameters:
00123                 takeadvice       Use the advised values? true 
00124                 amplitudeloss    Maximum fractional amplitude loss due to faceting 0.05 
00125                 fieldofview      Desired field of view 1.0deg 
00126                 
00127 
00128         Output Parameters:
00129                 _pixels          Number of pixels on a side 
00130                 _cell            Recommended maximum cellsize 
00131                 _facets          Recommended number of facets on one axis 
00132                 _phasecenter     Direction of phase center as a measure 
00133                 
00134         --------------------------------------------------------------------------------
00135                       
00136         """
00137         return _imager.imager_advise(self, *args, **kwargs)
00138 
00139     def advisechansel(self, *args, **kwargs):
00140         """
00141         advisechansel(self, freqstart=1.0e6, freqend=1.1e6, freqstep=100.0, freqframe=string("LSRK"), msname=string(""), 
00142             fieldid=0, getfreqrange=False, spwselection=string("")) -> record *
00143 
00144         Summary
00145                 Advise on spw and chan selection optimal for the image frequency range wanted
00146 
00147         Input Parameters:
00148                 freqstart        Begining of frequency range in Hz 1.0e6 
00149                 freqend          End of frequency range in Hz 1.1e6 
00150                 freqstep         spectral channel resolution of intended image in Hz 100.0 
00151                 freqframe        frame in which frequency is being expressed in other parameters LSRK 
00152                 msname           name of an ms, if empty string it will use the ms's used in selectvis 
00153                 fieldid          fieldid to use when msname is not empty otherwise ignored and field selected in selectvis is used 0 
00154                 getfreqrange     if set then freqrange is returned in the frame requested for the data selected false 
00155                 spwselection     if getfreqrange=True then this is needed to find the range of frequency in the frame requested 
00156                 
00157         --------------------------------------------------------------------------------
00158                       
00159         """
00160         return _imager.imager_advisechansel(self, *args, **kwargs)
00161 
00162     def approximatepsf(self, *args, **kwargs):
00163         """
00164         approximatepsf(self, psf=string(""), async=False) -> bool
00165 
00166         Summary
00167                 Calculate approximate point spread functions
00168 
00169         Input Parameters:
00170                 psf              Name of output point spread function 
00171                 async            Run asynchronously in the background false 
00172                 
00173         --------------------------------------------------------------------------------
00174                       
00175         """
00176         return _imager.imager_approximatepsf(self, *args, **kwargs)
00177 
00178     def boxmask(self, *args, **kwargs):
00179         """
00180         boxmask(self, mask=string(""), blc=initialize_vector(4,(int)0, (int)0, (int)0, (int)0), trc=std::vector< int >(), 
00181             value=1.0) -> bool
00182 
00183         Summary
00184                 Construct a mask image from blc, trc
00185 
00186         Input Parameters:
00187                 mask             name of mask image 
00188                 blc              Bottom left corner 0 0 0 0 
00189                 trc              Top right corner, should be image shape 
00190                 value            Value to fill in 1.0 
00191                 
00192         --------------------------------------------------------------------------------
00193                       
00194         """
00195         return _imager.imager_boxmask(self, *args, **kwargs)
00196 
00197     def calcuvw(self, *args, **kwargs):
00198         """
00199         calcuvw(self, fields=initialize_vector(1, (int)-1), refcode=string(""), reuse=True) -> bool
00200 
00201         Summary
00202                 Calculates (u, v, w) coordinates for the ms.
00203 
00204         Input Parameters:
00205                 fields           Field IDs (numbered relative to 0) to operate on. Blank = all. -1 
00206                 refcode          Reference frame to use for the generated (u, v, w)s. WARNING: clean and the im tool ignore the reference frame claimed by the UVW column (it is often mislabelled as ITRF when it is really J2000) and instead assume the (u, v, w)s are in the same frame as the phase tracking center. calcuvw does not yet force the UVW column and field centers to use the same reference frame! Blank = use the phase tracking frame of vis. 
00207                 reuse            Start from the UVWs in vis (True) or calculate them from the antenna positions? true 
00208                 
00209         --------------------------------------------------------------------------------
00210                       
00211         """
00212         return _imager.imager_calcuvw(self, *args, **kwargs)
00213 
00214     def clean(self, *args, **kwargs):
00215         """
00216         clean(self, algorithm=string("clark"), niter=1000, gain=0.1, threshold=initialize_variant("0.0Jy"), 
00217             displayprogress=False, model=std::vector< string >(1, ""), keepfixed=initialize_vector(1, (bool)false), 
00218             complist=string(""), mask=std::vector< string >(1, ""), 
00219             image=std::vector< string >(1, ""), residual=std::vector< string >(1, ""), 
00220             psfimage=std::vector< string >(1, ""), interactive=False, 
00221             npercycle=100, masktemplate=string(""), async=False) -> record *
00222 
00223         Summary
00224                 Calculate a deconvolved image with selected clean algorithm
00225 
00226         Input Parameters:
00227                 algorithm        Algorithm to use clark clarkstokes hogbom multiscale mfclark mfclarkstokes csclean csfast mfhogbom mfmultiscale wfclark wfhogbom clark 
00228                 niter            Number of Iterations, set to zero for no CLEANing 1000 
00229                 gain             Loop Gain for CLEANing 0.1 
00230                 threshold        Flux level at which to stop CLEANing 0.0Jy 
00231                 displayprogress  Display the progress of the cleaning? false 
00232                 model            Names of clean model images 
00233                 keepfixed        Keep one or more models fixed false 
00234                 complist         Name of component list 
00235                 mask             Names of mask images used for CLEANing 
00236                 image            Names of restored images 
00237                 residual         Names of residual images 
00238                 psfimage         Names of psfs if they are needed 
00239                 interactive      whether to stop clean and interactively mask false 
00240                 npercycle        If interactive is 'T', then no of iter of clean before stopping, usually a fraction of niter 100 
00241                 masktemplate     If non empty then will use this image to make the mask the first time 
00242                 async            Run asynchronously in the background? false 
00243                 
00244         --------------------------------------------------------------------------------
00245                       
00246         """
00247         return _imager.imager_clean(self, *args, **kwargs)
00248 
00249     def clipimage(self, *args, **kwargs):
00250         """
00251         clipimage(self, image=string(""), threshold=initialize_variant("0.0Jy")) -> bool
00252 
00253         Summary
00254                 Zero all pixels where Stokes I is below
00255         a threshold
00256 
00257         Input Parameters:
00258                 image            name of image 
00259                 threshold        Threshold 0.0Jy 
00260                 
00261         --------------------------------------------------------------------------------
00262                       
00263         """
00264         return _imager.imager_clipimage(self, *args, **kwargs)
00265 
00266     def clipvis(self, *args, **kwargs):
00267         """
00268         clipvis(self, threshold=initialize_variant("0.0Jy")) -> bool
00269 
00270         Summary
00271                 Flag visibilities where residual exceeds
00272         a threshold
00273 
00274         Input Parameters:
00275                 threshold        Threshold 0.0Jy 
00276                 
00277         --------------------------------------------------------------------------------
00278                       
00279         """
00280         return _imager.imager_clipvis(self, *args, **kwargs)
00281 
00282     def close(self):
00283         """
00284         close(self) -> bool
00285 
00286         Summary
00287                 Close the imager tool, with data written on disk, keeping imager process running for future use
00288         --------------------------------------------------------------------------------
00289                       
00290         """
00291         return _imager.imager_close(self)
00292 
00293     def defineimage(self, *args, **kwargs):
00294         """
00295         defineimage(self, nx=128, ny=-1, cellx=initialize_variant("1.0"), celly=initialize_variant(""), stokes=string("I"), 
00296             phasecenter=initialize_variant("0"), mode=string("mfs"), nchan=-1, 
00297             start=initialize_variant("0"), step=initialize_variant("1"), spw=initialize_vector(1, (int)0), 
00298             restfreq=initialize_variant(""), outframe=string("LSRK"), 
00299             veltype=string("radio"), facets=1, movingsource=initialize_variant(""), 
00300             distance=initialize_variant("0.0")) -> bool
00301 
00302         Summary
00303                 Set the image parameters for subsequent processing
00304 
00305         Input Parameters:
00306                 nx               Total number of spatial pixels in x 128 
00307                 ny               Total number of spatial pixels in y -1 
00308                 cellx            Cellsize in x (e.g. '1arcsec') 1.0 
00309                 celly            Cellsize in y (e.g. '1arcsec') 
00310                 stokes           Stokes parameters to image (e.g. 'IQUV') IV IQU IQUV I 
00311                 phasecenter      Direction of phase center as a diretion measure or a field id 0 
00312                 mode             Type of processing (velocity =radiovelocity) frequency radiovelocity opticalvelocity truevelocity mfs 
00313                 nchan            Number of channels; a -1 (default) means all the channels as selected in selectvis and combined into one continuum channel -1 
00314                 start            Start channel; A 0-relative channel number of the spwid or a frequency quantity or a velocity quantity or radial velocity measure 0 
00315                 step             Step in channel; integer for number of channels or frequency quantity or velocity quantity or radial velocity measure 1 
00316                 spw              Spectral Window Id (0 relative) that defines center of image 0 
00317                 restfreq         rest frequency to use; default => use the one available in ms 
00318                 outframe         frequency frame of output image (default LSRK, '' => as input ms or LSRK in case of multiple ms's), options are LSRK, LSRD, BARY, GALACTO, LGROUP, CMB LSRK LSRK LSRD BARY GALACTO LGROUP CMB 
00319                 veltype          velocity definition ('radio' or 'optical' or 'relativistic') optical relativistic radio 
00320                 facets           Number of facets on each axis 1 
00321                 movingsource     Name of moving source, e.g planet or moon, to keep fixed in image 
00322                 distance         Distance to object: usually ignore this! (m) 0.0 
00323                 
00324         --------------------------------------------------------------------------------
00325                       
00326         """
00327         return _imager.imager_defineimage(self, *args, **kwargs)
00328 
00329     def done(self):
00330         """
00331         done(self) -> bool
00332 
00333         Summary
00334                 Terminate the imager process
00335         --------------------------------------------------------------------------------
00336                       
00337         """
00338         return _imager.imager_done(self)
00339 
00340     def drawmask(self, *args, **kwargs):
00341         """
00342         drawmask(self, image=string(""), mask=string(""), niter=0, npercycle=0, threshold=string("0 mJy")) -> record *
00343 
00344         Summary
00345                 Allows you do draw mask using the viewer
00346 
00347         Input Parameters:
00348                 image            name of template image 
00349                 mask             name of image to save mask in 
00350                 niter            Total number of iteration to display in box; just for display or python packaging 0 
00351                 npercycle        npercycle value to display in box; just for display or python packaging 0 
00352                 threshold        threshold to display in box ; just for display or python packaging 0 mJy 
00353                 
00354         --------------------------------------------------------------------------------
00355                       
00356         """
00357         return _imager.imager_drawmask(self, *args, **kwargs)
00358 
00359     def exprmask(self, *args, **kwargs):
00360         """
00361         exprmask(self, mask=string(""), expr=1.0) -> bool
00362 
00363         Summary
00364                 Construct a mask image from a LEL expression
00365 
00366         Input Parameters:
00367                 mask             name of mask image 
00368                 expr             Value to set the mask to. Any scalar or LEL expression 1.0 
00369                 
00370         --------------------------------------------------------------------------------
00371                       
00372         """
00373         return _imager.imager_exprmask(self, *args, **kwargs)
00374 
00375     def feather(self, *args, **kwargs):
00376         """
00377         feather(self, image=string(""), highres=string(""), lowres=string(""), lowpsf=string(""), effdishdiam=-1.0, 
00378             showplot=False, async=False) -> bool
00379 
00380         Summary
00381                 Feather together an interferometer and a single dish image
00382         in the Fourier plane
00383 
00384         Input Parameters:
00385                 image            Name of output feathered image 
00386                 highres          Name of high resolution (interferometer) image 
00387                 lowres           Name of low resolution (single dish) image 
00388                 lowpsf           Name of optional low resolution point spread function 
00389                 effdishdiam      Optional new SD dish diameter in m to use in feathering; can be smaller than true dish size -1.0 
00390                 showplot         Plot the feather function false 
00391                 async            Run asynchronously in the background false 
00392                 
00393         --------------------------------------------------------------------------------
00394                       
00395         """
00396         return _imager.imager_feather(self, *args, **kwargs)
00397 
00398     def filter(self, *args, **kwargs):
00399         """
00400         filter(self, type=string("gaussian"), bmaj=initialize_variant("1arcsec"), bmin=initialize_variant("1arcsec"), 
00401             bpa=initialize_variant("0deg"), async=False) -> bool
00402 
00403         Summary
00404                 Apply additional weighting by filtering (u-v taper)
00405 
00406         Input Parameters:
00407                 type             Type of filtering or u-v tapering gaussian 
00408                 bmaj             Major axis of filter 1arcsec 
00409                 bmin             Minor axis of filter 1arcsec 
00410                 bpa              Position angle of filter 0deg 
00411                 async            Run asynchronously in the background false 
00412                 
00413         --------------------------------------------------------------------------------
00414                       
00415         """
00416         return _imager.imager_filter(self, *args, **kwargs)
00417 
00418     def fitpsf(self, *args, **kwargs):
00419         """
00420         fitpsf(self, psf, async=False, _bmaj=_bmaj_fitpsf, _bmin=_bmin_fitpsf, _bpa=_bpa_fitpsf) -> bool
00421 
00422         Summary
00423                 Fit the point spread function, making psf image first if needed
00424 
00425         Input Parameters:
00426                 psf              Name of input psf 
00427                 async            Run asynchronously in the background false 
00428                 
00429 
00430         Output Parameters:
00431                 _bmaj            Major axis of beam 
00432                 _bmin            Minor axis of beam 
00433                 _bpa             Position angle of beam 
00434                 
00435         --------------------------------------------------------------------------------
00436                       
00437         """
00438         return _imager.imager_fitpsf(self, *args, **kwargs)
00439 
00440     def fixvis(self, *args, **kwargs):
00441         """
00442         fixvis(self, fields=initialize_vector(1, (int)-1), phasedirs=std::vector< string >(1, ""), refcode=string(""), 
00443             distances=initialize_vector(1, (double)0.0), datacolumn=string("all")) -> bool
00444 
00445         Summary
00446                 Performs visibility adjustments.
00447 
00448         Input Parameters:
00449                 fields           Field IDs (numbered relative to 0) to operate on. Blank = all. -1 
00450                 phasedirs        Phase tracking centers for each field in fields, in the same order. 
00451                 refcode          Reference frame to use for the generated UVWs. WARNING: clean and the im tool ignore the reference frame claimed by the UVW column (it is often mislabelled as ITRF when it is really J2000) and instead assume the (u, v, w)s are in the same frame as the phase tracking center. calcuvw does not yet force the UVW column and field centers to use the same reference frame! Blank = use the phase tracking frame of vis. 
00452                 distances        A list of distances (in m) for the fields listed in fields. 0 = infinity. 0.0 
00453                 datacolumn       Which of DATA, MODEL_DATA, and/or CORRECTED_DATA to operate on. Default: 'all'. all 
00454                 
00455         --------------------------------------------------------------------------------
00456                       
00457         """
00458         return _imager.imager_fixvis(self, *args, **kwargs)
00459 
00460     def ft(self, *args, **kwargs):
00461         """
00462         ft(self, model=std::vector< string >(1, ""), complist=string(""), incremental=False, async=False) -> bool
00463 
00464         Summary
00465                 Fourier transform the specified model and componentlist
00466 
00467         Input Parameters:
00468                 model            Name of image 
00469                 complist         Name of component list 
00470                 incremental      Add to the existing MODEL\_DATA column? false 
00471                 async            Run asynchronously in the background? false 
00472                 
00473         --------------------------------------------------------------------------------
00474                       
00475         """
00476         return _imager.imager_ft(self, *args, **kwargs)
00477 
00478     def getweightgrid(self, *args, **kwargs):
00479         """
00480         getweightgrid(self, type=string("imaging"), wgtimages=std::vector< string >(1, "")) -> variant *
00481 
00482         Summary
00483                 get the requested weight grids
00484 
00485         Input Parameters:
00486                 type             Type of weight requested (imaging, ftweight) imaging imaging ftweight 
00487                 wgtimages        names of weightimages to save 
00488                 
00489         --------------------------------------------------------------------------------
00490                       
00491         """
00492         return _imager.imager_getweightgrid(self, *args, **kwargs)
00493 
00494     def linearmosaic(self, *args, **kwargs):
00495         """
00496         linearmosaic(self, images=std::vector< string >(1, ""), mosaic=string(""), fluxscale=string(""), sensitivity=string(""), 
00497             fieldids=initialize_vector(1, (int)0), usedefaultvp=True, 
00498             vptable=string(""), async=False) -> bool
00499 
00500         Summary
00501                 Make a linear mosaic of several images
00502 
00503         Input Parameters:
00504                 images           Input images to be mosaiced 
00505                 mosaic           Output mosaic image 
00506                 fluxscale        Fluxscale image 
00507                 sensitivity      Sensitivity image 
00508                 fieldids         List of field ids that correspond each of the images,used to center the PB of each image. (0-based list) 0 
00509                 usedefaultvp     Use the default vp type? true 
00510                 vptable          Voltage pattern table from the vpmanager for detailed specification 
00511                 async            Run asynchronously in the background false 
00512                 
00513         --------------------------------------------------------------------------------
00514                       
00515         """
00516         return _imager.imager_linearmosaic(self, *args, **kwargs)
00517 
00518     def make(self, *args, **kwargs):
00519         """
00520         make(self, image=string(""), async=False) -> bool
00521 
00522         Summary
00523                 Make an empty (i.e. blank) image
00524 
00525         Input Parameters:
00526                 image            name of output image 
00527                 async            Run asynchronously in the background false 
00528                 
00529         --------------------------------------------------------------------------------
00530                       
00531         """
00532         return _imager.imager_make(self, *args, **kwargs)
00533 
00534     def predictcomp(self, *args, **kwargs):
00535         """
00536         predictcomp(self, objname=string(""), standard=string(""), epoch=initialize_variant("55555.0d"), freqs=initialize_vector(1,(double)1.0e11), 
00537             pfx=string("predictcomp")) -> string
00538 
00539         Summary
00540                 Make a component list for a known object
00541 
00542         Input Parameters:
00543                 objname          Name of the object 
00544                 standard         Name of the flux standard 
00545                 epoch            Time to use, as an epoch measure, e.g. me.epoch('UTC', '55555d'), for Solar System objects 55555.0d epoch measure 
00546                 freqs            The frequencies to use, in Hz 1.0e11 
00547                 pfx              Prefix for the name of the component list predictcomp 
00548                 
00549         --------------------------------------------------------------------------------
00550                       
00551         """
00552         return _imager.imager_predictcomp(self, *args, **kwargs)
00553 
00554     def makeimage(self, *args, **kwargs):
00555         """
00556         makeimage(self, type=string("observed"), image=string(""), compleximage=string(""), verbose=True, 
00557             async=False) -> bool
00558 
00559         Summary
00560                 Calculate images by gridding, etc.
00561 
00562         Input Parameters:
00563                 type             Type of output image observed 
00564                 image            Name of output image 
00565                 compleximage     Name of output complex image 
00566                 verbose          Report things like the center frequency to the logger true 
00567                 async            Run asynchronously in the background false 
00568                 
00569         --------------------------------------------------------------------------------
00570                       
00571         """
00572         return _imager.imager_makeimage(self, *args, **kwargs)
00573 
00574     def makemodelfromsd(self, *args, **kwargs):
00575         """
00576         makemodelfromsd(self, sdimage=string(""), modelimage=string(""), sdpsf=string(""), maskimage=string("")) -> bool
00577 
00578         Summary
00579                 Make an initial model image from a
00580             Single Dish image
00581 
00582         Input Parameters:
00583                 sdimage          Single Dish image 
00584                 modelimage       Name of output image to be used as model 
00585                 sdpsf            PSF of Single Dish if needed 
00586                 maskimage        mask image 
00587                 
00588         --------------------------------------------------------------------------------
00589                       
00590         """
00591         return _imager.imager_makemodelfromsd(self, *args, **kwargs)
00592 
00593     def mask(self, *args, **kwargs):
00594         """
00595         mask(self, image=string(""), mask=string(""), threshold=initialize_variant("0.0Jy"), async=False) -> bool
00596 
00597         Summary
00598                 Construct a mask image by thresholding an image
00599 
00600         Input Parameters:
00601                 image            name of template image 
00602                 mask             name of mask image 
00603                 threshold        threshold for mask 0.0Jy 
00604                 async            Run asynchronously in the background false 
00605                 
00606         --------------------------------------------------------------------------------
00607                       
00608         """
00609         return _imager.imager_mask(self, *args, **kwargs)
00610 
00611     def mem(self, *args, **kwargs):
00612         """
00613         mem(self, algorithm=string("entropy"), niter=20, sigma=initialize_variant("0.001Jy"), targetflux=initialize_variant("1.0Jy"), 
00614             constrainflux=False, displayprogress=False, 
00615             model=std::vector< string >(1, ""), keepfixed=initialize_vector(1, (bool)false), 
00616             complist=string(""), prior=std::vector< string >(1, ""), mask=std::vector< string >(1, ""), 
00617             image=std::vector< string >(1, ""), residual=std::vector< string >(1, ""), 
00618             async=False) -> bool
00619 
00620         Summary
00621                 Calculate a deconvolved image with selected mem (maximum entropy) algorithm
00622 
00623         Input Parameters:
00624                 algorithm        Algorithm to use entropy emptiness mfentropy mfemptiness entropy entropy 
00625                 niter            Number of Iterations 20 
00626                 sigma            Image sigma to try to achieve 0.001Jy 
00627                 targetflux       Target flux for final image 1.0Jy 
00628                 constrainflux    Constrain image to match target flux? else targetflux used only to initialize model false 
00629                 displayprogress  Display the progress of the cleaning? false 
00630                 model            Names of model images 
00631                 keepfixed        Keep model fixed false 
00632                 complist         Name of component list 
00633                 prior            Names of mem prior images 
00634                 mask             Names of mask images (0=>no emission, 1=>emission permitted 
00635                 image            Names of restored images 
00636                 residual         Names of residual images 
00637                 async            Run asynchronously in the background? false 
00638                 
00639         --------------------------------------------------------------------------------
00640                       
00641         """
00642         return _imager.imager_mem(self, *args, **kwargs)
00643 
00644     def nnls(self, *args, **kwargs):
00645         """
00646         nnls(self, model=std::vector< string >(1, ""), keepfixed=initialize_vector(1, (bool)false), 
00647             complist=string(""), niter=0, tolerance=1e-06, fluxmask=std::vector< string >(1, ""), 
00648             datamask=std::vector< string >(1, ""), image=std::vector< string >(1, ""), 
00649             residual=std::vector< string >(1, ""), async=False) -> bool
00650 
00651         Summary
00652                 Calculate a deconvolved image using the 
00653         NNLS algorithm
00654 
00655         Input Parameters:
00656                 model            Name of image 
00657                 keepfixed        Keep model fixed false 
00658                 complist         Name of component list 
00659                 niter            Number of Iterations, set to zero for no NNLS 0 
00660                 tolerance        Tolerance for solution 1e-06 
00661                 fluxmask         Name of mask for allowed flux 
00662                 datamask         Name of mask for constraint pixels in dirty image 
00663                 image            Names of restored images 
00664                 residual         Names of restored images 
00665                 async            Run asynchronously in the background false 
00666                 
00667         --------------------------------------------------------------------------------
00668                       
00669         """
00670         return _imager.imager_nnls(self, *args, **kwargs)
00671 
00672     def open(self, *args, **kwargs):
00673         """
00674         open(self, thems=string(""), compress=False, usescratch=False) -> bool
00675 
00676         Summary
00677                 Open a new MeasurementSet, for processing, closing current MeasurementSet
00678 
00679         Input Parameters:
00680                 thems            New MeasurementSet to be processed 
00681                 compress         Compress calibration columns? false 
00682                 usescratch       If true: Imager will use corrected data column and make scratch columns of they donot exist false 
00683                 
00684         --------------------------------------------------------------------------------
00685                       
00686         """
00687         return _imager.imager_open(self, *args, **kwargs)
00688 
00689     def pb(self, *args, **kwargs):
00690         """
00691         pb(self, inimage=string(""), outimage=string(""), incomps=string(""), outcomps=string(""), 
00692             operation=string("apply"), pointingcenter=string("N. pole"), parangle=initialize_variant("0.0deg"), 
00693             pborvp=string("pb"), async=False) -> bool
00694 
00695         Summary
00696                 Applies or corrects for a primary beam
00697 
00698         Input Parameters:
00699                 inimage          Input image to apply beam to 
00700                 outimage         Output image after beam is applied 
00701                 incomps          Input Componentlist table name 
00702                 outcomps         Output Componentlist table name 
00703                 operation        Operation correct apply 
00704                 pointingcenter   Pointing center for primary beam application false N. pole 
00705                 parangle         Parallactic angle for calculation 0.0deg 
00706                 pborvp           Primary Beam or Voltage Pattern vb pb 
00707                 async            Run asynchronously in the background false 
00708                 
00709         --------------------------------------------------------------------------------
00710                       
00711         """
00712         return _imager.imager_pb(self, *args, **kwargs)
00713 
00714     def plotsummary(self):
00715         """
00716         plotsummary(self) -> bool
00717 
00718         Summary
00719                 Plot a summary of field and spectral window  ids
00720         --------------------------------------------------------------------------------
00721                       
00722         """
00723         return _imager.imager_plotsummary(self)
00724 
00725     def plotuv(self, rotate=False):
00726         """
00727         plotuv(self, rotate=False) -> bool
00728 
00729         Summary
00730                 Plot the uv coverage
00731 
00732         Input Parameters:
00733                 rotate           Rotate uvw coordinates to specified phase center? false 
00734                 
00735         --------------------------------------------------------------------------------
00736                       
00737         """
00738         return _imager.imager_plotuv(self, rotate)
00739 
00740     def plotvis(self, *args, **kwargs):
00741         """
00742         plotvis(self, type=string("all"), increment=1) -> bool
00743 
00744         Summary
00745                 Plot the visibility amplitudes as a function of u-v radius (also, see visplot tool
00746 
00747         Input Parameters:
00748                 type             Type of plot: can contain all, observed, corrected, model, residual all observed corrected model residual all 
00749                 increment        Increment in points to plot 1 
00750                 
00751         --------------------------------------------------------------------------------
00752                       
00753         """
00754         return _imager.imager_plotvis(self, *args, **kwargs)
00755 
00756     def plotweights(self, gridded=False, increment=1):
00757         """
00758         plotweights(self, gridded=False, increment=1) -> bool
00759 
00760         Summary
00761                 Plot the visibility weights as a function of u-v radius
00762 
00763         Input Parameters:
00764                 gridded          Do gridded plot? false 
00765                 increment        Increment in points to plot 1 
00766                 
00767         --------------------------------------------------------------------------------
00768                       
00769         """
00770         return _imager.imager_plotweights(self, gridded, increment)
00771 
00772     def regionmask(self, *args, **kwargs):
00773         """
00774         regionmask(self, mask=string(""), region=initialize_record(""), boxes=initialize_variant(""), circles=initialize_variant(""), 
00775             value=1.0) -> bool
00776 
00777         Summary
00778                 Construct a mask image from a region
00779 
00780         Input Parameters:
00781                 mask             name of mask image 
00782                 region           Region record usually from regionmanager unset 
00783                 boxes            list of 4 elements lists e.g [[xblc1, yblc1, xtrc1, ytrc1], [[xblc2, yblc2, xtrc2, ytrc2]] 
00784                 circles          list of 3 elements lists e.g [[rad0, xcen0, ycen0], [rad1,xcen1, ycen1], .....] 
00785                 value            Value to set the mask to 1.0 
00786                 
00787         --------------------------------------------------------------------------------
00788                       
00789         """
00790         return _imager.imager_regionmask(self, *args, **kwargs)
00791 
00792     def regiontoimagemask(self, *args, **kwargs):
00793         """
00794         regiontoimagemask(self, mask=string(""), region=initialize_record(""), boxes=initialize_variant(""), circles=initialize_variant(""), 
00795             value=1.0) -> bool
00796 
00797         Summary
00798                 union a mask image with various regions 
00799 
00800         Input Parameters:
00801                 mask             name of mask image 
00802                 region           Region record usually from regionmanager unset 
00803                 boxes            list of 4 elements lists e.g [[xblc1, yblc1, xtrc1, ytrc1], [[xblc2, yblc2, xtrc2, ytrc2]] 
00804                 circles          list of 3 elements lists e.g [[rad0, xcen0, ycen0], [rad1,xcen1, ycen1], .....] 
00805                 value            Value to set the mask to 1.0 
00806                 
00807         --------------------------------------------------------------------------------
00808                       
00809         """
00810         return _imager.imager_regiontoimagemask(self, *args, **kwargs)
00811 
00812     def residual(self, *args, **kwargs):
00813         """
00814         residual(self, model=std::vector< string >(1, ""), complist=string(""), image=std::vector< string >(1, ""), 
00815             async=False) -> bool
00816 
00817         Summary
00818                 Calculate the residual image with respect to current model and component list
00819 
00820         Input Parameters:
00821                 model            Names of input models 
00822                 complist         Name of component list 
00823                 image            Names of output residual images 
00824                 async            Run asynchronously in the background false 
00825                 
00826         --------------------------------------------------------------------------------
00827                       
00828         """
00829         return _imager.imager_residual(self, *args, **kwargs)
00830 
00831     def restore(self, *args, **kwargs):
00832         """
00833         restore(self, model=std::vector< string >(1, ""), complist=string(""), image=std::vector< string >(1, ""), 
00834             residual=std::vector< string >(1, ""), async=False) -> bool
00835 
00836         Summary
00837                 Calculate the restored image with restored model, component list, and  residuals
00838 
00839         Input Parameters:
00840                 model            Names of input model 
00841                 complist         Name of component list 
00842                 image            Names of output restored images 
00843                 residual         Names of residual images 
00844                 async            Run asynchronously in the background false 
00845                 
00846         --------------------------------------------------------------------------------
00847                       
00848         """
00849         return _imager.imager_restore(self, *args, **kwargs)
00850 
00851     def updateresidual(self, *args, **kwargs):
00852         """
00853         updateresidual(self, model=std::vector< string >(1, ""), complist=string(""), image=std::vector< string >(1, ""), 
00854             residual=std::vector< string >(1, "")) -> bool
00855 
00856         Summary
00857                 Calculate the residual and restored images with new modified model, component list,
00858 
00859         Input Parameters:
00860                 model            Names of input model 
00861                 complist         Name of component list 
00862                 image            Names of output restored images 
00863                 residual         Names of residual images 
00864                 
00865         --------------------------------------------------------------------------------
00866                       
00867         """
00868         return _imager.imager_updateresidual(self, *args, **kwargs)
00869 
00870     def sensitivity(self, *args, **kwargs):
00871         """
00872         sensitivity(self, async=False, _pointsource=_pointsource_sensitivity, _relative=_relative_sensitivity, 
00873             _sumweights=_sumweights_sensitivity) -> bool
00874 
00875         Summary
00876                 Calculate rms  sensitivity
00877 
00878         Input Parameters:
00879                 async            Run asynchronously in the background false 
00880                 
00881 
00882         Output Parameters:
00883                 _pointsource     Calculated point source sensitivity (Jy/beam) 
00884                 _relative        Calculated relative sensitivity 
00885                 _sumweights      Calculated sum of weights 
00886                 
00887         --------------------------------------------------------------------------------
00888                       
00889         """
00890         return _imager.imager_sensitivity(self, *args, **kwargs)
00891 
00892     def setbeam(self, *args, **kwargs):
00893         """
00894         setbeam(self, bmaj=initialize_variant("1.0arcsec"), bmin=initialize_variant("1.0arcsec"), bpa=initialize_variant("0deg"), 
00895             async=False) -> bool
00896 
00897         Summary
00898                 Set the beam parameters for clean restoration
00899 
00900         Input Parameters:
00901                 bmaj             Major axis of beam 1.0arcsec 
00902                 bmin             Minor axis of beam 1.0arcsec 
00903                 bpa              Position angle of beam 0deg 
00904                 async            Run asynchronously in the background false 
00905                 
00906         --------------------------------------------------------------------------------
00907                       
00908         """
00909         return _imager.imager_setbeam(self, *args, **kwargs)
00910 
00911     def selectvis(self, *args, **kwargs):
00912         """
00913         selectvis(self, vis=string(""), nchan=initialize_vector(1, (int)-1), start=initialize_vector(1, (int)0), 
00914             step=initialize_vector(1, (int)1), spw=initialize_variant("-1"), field=initialize_variant("-1"), 
00915             baseline=initialize_variant("-1"), time=initialize_variant(""), 
00916             scan=initialize_variant(""), observation=initialize_variant(""), 
00917             uvrange=initialize_variant(""), taql=string(""), usescratch=False, 
00918             datainmemory=False, writeaccess=True) -> bool
00919 
00920         Summary
00921                 Select visibilities for subsequent processing
00922 
00923         Input Parameters:
00924                 vis              Measurementset for which this selection applies; an empty string '' implies that it is to be applied in ms used in open 
00925                 nchan            Number of channels to select -1 
00926                 start            Start channels (0-relative) 0 
00927                 step             Step in channel number 1 
00928                 spw              Spectral Window Ids (0 relative) to select; -1 interpreted as all -1 
00929                 field            Field Ids (0 relative) or Field names (msselection syntax and wilcards are used) to select -1 
00930                 baseline         Antenna Ids (0 relative) or Antenna names (msselection syntax and wilcards are used) to select -1 
00931                 time             Limit data selected to be within a given time range. The syntax is defined in the msselection link 
00932                 scan             Limit data selected on scan numbers. The syntax is defined in the msselection link 
00933                 observation      Limit data using observation IDs. The syntax is defined in the msselection link 
00934                 uvrange          Limit data selected on uv distance. The syntax is defined in the msselection link 
00935                 taql             For the TAQL experts, flexible data selection using the TAQL syntax 
00936                 usescratch       If True: imager will use CORRECTED_DATA column and will make scratch columns and store Model visibilities after deconvolution false 
00937                 datainmemory     If True: imager will load the selected ms memory; useful if imaging a few channels that fit in memory false 
00938                 writeaccess      If False: imager will open the ms in readmode; useful for multiple process access to the MS true 
00939                 
00940         --------------------------------------------------------------------------------
00941                       
00942         """
00943         return _imager.imager_selectvis(self, *args, **kwargs)
00944 
00945     def setjy(self, *args, **kwargs):
00946         """
00947         setjy(self, field=initialize_variant(""), spw=initialize_variant(""), modimage=string(""), fluxdensity=initialize_vector(4,(double)0.0, (double)0.0, (double)0.0, (double)0.0), 
00948             standard=string("SOURCE"), 
00949             scalebychan=False, spix=0.0, reffreq=initialize_variant("1GHz"), 
00950             time=string(""), scan=string(""), observation=string("")) -> bool
00951 
00952         Summary
00953                 Compute the model visibility for a specified source flux density
00954 
00955         Input Parameters:
00956                 field            Field Id (0-relative) or name 
00957                 spw              Spectral Window Id. (0-relative) 
00958                 modimage         A model image 
00959                 fluxdensity      Specified flux density (I,Q,U,V) in Jy (lookup the value; use 1.0 if not found) 0.0 0.0 0.0 0.0 
00960                 standard         Flux density standard Baars Perley 90 Perley-Taylor 95 Perley-Taylor 99 Perley-Butler 2010 SOURCE 
00961                 scalebychan      Do the flux scaling on a per channel basis else on a spw basis. Effectively True if fluxdensity is specified. false 
00962                 spix             Spectral index for fluxdensity. S = fluxdensity * (freq/reffreq)**spix 0.0 
00963                 reffreq          Reference frequency for spix. 1GHz 
00964                 time             Time range to operate on 
00965                 scan             Scan(s) to operate on 
00966                 observation      Observation ID(s) to operate on 
00967                 
00968         --------------------------------------------------------------------------------
00969                       
00970         """
00971         return _imager.imager_setjy(self, *args, **kwargs)
00972 
00973     def ssoflux(self):
00974         """
00975         ssoflux(self) -> bool
00976 
00977         Summary
00978                 Use setjy instead.
00979         --------------------------------------------------------------------------------
00980                       
00981         """
00982         return _imager.imager_ssoflux(self)
00983 
00984     def setmfcontrol(self, *args, **kwargs):
00985         """
00986         setmfcontrol(self, cyclefactor=1.5, cyclespeedup=-1, cyclemaxpsffraction=0.8, stoplargenegatives=2, 
00987             stoppointmode=-1, minpb=0.1, scaletype=string("NONE"), constpb=0.4, fluxscale=std::vector< string >(1, ""), 
00988             flatnoise=True) -> bool
00989 
00990         Summary
00991                 Set various cycle control parameters for 
00992         multi-field and wide-field imageing.
00993 
00994         Input Parameters:
00995                 cyclefactor      Cycle threshold = max_resid * min(cyclemaxpsffraction, this * max_sidelobe) 1.5 
00996                 cyclespeedup     Cycle threshold doubles in this number of iterations -1 
00997                 cyclemaxpsffraction      Cycle threshold = max_resid * min(this, cyclefactor * max_sidelobe) 0.8 
00998                 stoplargenegatives       Stop the multiscale cycle for the first n cycles when a negative comp is found on the largest scale 2 
00999                 stoppointmode    Stop multiscale altogether if the smallest scale recieves this many consecutive components -1 
01000                 minpb            Minimum PB level to use 0.1 
01001                 scaletype        Image plane flux scale type SAULT NONE NONE 
01002                 constpb          In Sault weighting the flux scale is constant above this PB level 0.4 
01003                 fluxscale        Names of flux scale images for mosaicing 
01004                 flatnoise        Set to false if clean component search is to be done in an optimal signal/noise residual image if true will clean in a constant noise image true 
01005                 
01006         --------------------------------------------------------------------------------
01007                       
01008         """
01009         return _imager.imager_setmfcontrol(self, *args, **kwargs)
01010 
01011     def setoptions(self, *args, **kwargs):
01012         """
01013         setoptions(self, ftmachine=string("ft"), cache=-1, tile=16, gridfunction=string("SF"), location=initialize_variant(""), 
01014             padding=1.0, freqinterp=string("nearest"), wprojplanes=1, 
01015             epjtablename=string(""), applypointingoffsets=False, dopbgriddingcorrections=True, 
01016             cfcachedirname=string(""), pastep=1.0, pblimit=0.05, imagetilevol=0, 
01017             singleprecisiononly=False, numthreads=-1, psterm=True, aterm=True, wbawp=False) -> bool
01018 
01019         Summary
01020                 Set some general options for subsequent processing
01021 
01022         Input Parameters:
01023                 ftmachine        Fourier transform machine ft ft sd both wproject mosaic 
01024                 cache            Size of gridding cache in complex pixels; default use half the memory available on computer -1 
01025                 tile             Size of a gridding tile in pixels (in 1 dimension) 16 
01026                 gridfunction     Gridding function SF SF BOX PB GAUSS GJINC 
01027                 location         Location used in phase rotations 
01028                 padding          Padding factor in image plane (>=1.0) 1.0 
01029                 freqinterp       interpolation mode in frequency;options:- nearest, linear, cubic, spline nearest nearest linear cubic spline 
01030                 wprojplanes      No of gridding convolution functions used in wproject-ft machine 1 
01031                 epjtablename     E-Jones table name. This is used if applypointingoffsets is set to True. 
01032                 applypointingoffsets     Apply pointing offset corrections during deconvolution. false 
01033                 dopbgriddingcorrections  Correct for PB gridding before prediction of visibilities. This should be True when doing deconvolution. This should be False when predicting visibilities for model sky with no primary beam attenuation in the model. true 
01034                 cfcachedirname   Directory where convolution functions are to be (or are being ) cached on the disk. 
01035                 pastep           The number of steps in Parallactic Angle used to compute the average power pattern. Since a linear interpolation is used to interpolate convolution functions during gridding, this can be different from PA increment to compute new convolution functions. This parameter is however not used yet. 1.0 
01036                 pblimit          Primary beam limit when using PBWProjection 0.05 
01037                 imagetilevol     Tile size on for image on disk (in pixel, multiply by 4 to get the byte size). It is safe to leave this as default, meant for usage on filesystem like Lustre, the default implies 32x32x4x32 tile shape 0 
01038                 singleprecisiononly      Set this value to True to force single precision all the time. Otherwise imager may use double precision gridding (ft and wproject only for now) when it can and deems it fit. Setting to True can be handy on low memory machines false 
01039                 numthreads       Limit the number of threads used in this run (openmp enabled only) -1 
01040                 psterm           Switch-on the PS-Term? true 
01041                 aterm            Switch-on the A-Term? true 
01042                 wbawp            Trigger the WB A-Projection algorithm? false 
01043                 
01044         --------------------------------------------------------------------------------
01045                       
01046         """
01047         return _imager.imager_setoptions(self, *args, **kwargs)
01048 
01049     def setscales(self, *args, **kwargs):
01050         """
01051         setscales(self, scalemethod=string("nscales"), nscales=5, uservector=initialize_vector(3,(double)0.0, (double)3.0, (double)10.0)) -> bool
01052 
01053         Summary
01054                 Set the scale sizes for MultiScale Clean
01055 
01056         Input Parameters:
01057                 scalemethod      Method by which scales are set nscales uservector nscales 
01058                 nscales          Number of scales 5 
01059                 uservector       Vector of scale sizes in pixels to use, defaults should be 0,3,10 0.0 3.0 10.0 
01060                 
01061         --------------------------------------------------------------------------------
01062                       
01063         """
01064         return _imager.imager_setscales(self, *args, **kwargs)
01065 
01066     def setsmallscalebias(self, inbias=0.6):
01067         """
01068         setsmallscalebias(self, inbias=0.6) -> bool
01069 
01070         Summary
01071                 Set bias toward smaller scales for  MultiScale Clean
01072 
01073         Input Parameters:
01074                 inbias           small scale bias 0.6 
01075                 
01076         --------------------------------------------------------------------------------
01077                       
01078         """
01079         return _imager.imager_setsmallscalebias(self, inbias)
01080 
01081     def settaylorterms(self, ntaylorterms=2, reffreq=0.0):
01082         """
01083         settaylorterms(self, ntaylorterms=2, reffreq=0.0) -> bool
01084 
01085         Summary
01086                 Set the number of Taylor series terms for Multi-Frequency Clean
01087 
01088         Input Parameters:
01089                 ntaylorterms     Number of Taylor terms 2 
01090                 reffreq          Reference Frequency 0.0 
01091                 
01092         --------------------------------------------------------------------------------
01093                       
01094         """
01095         return _imager.imager_settaylorterms(self, ntaylorterms, reffreq)
01096 
01097     def setsdoptions(self, *args, **kwargs):
01098         """
01099         setsdoptions(self, scale=1.0, weight=1.0, convsupport=-1, pointingcolumntouse=string("DIRECTION"), truncate=initialize_variant("-1pixel"), 
01100             gwidth=initialize_variant("-1pixel"), 
01101             jwidth=initialize_variant("-1pixel")) -> bool
01102 
01103         Summary
01104                 Set some options for single dish processing
01105 
01106         Input Parameters:
01107                 scale            Scaling applied to single dish data 1.0 
01108                 weight           Weights applied to single dish data 1.0 
01109                 convsupport      number of pixel for convolution support -1 
01110                 pointingcolumntouse      Which Pointing Table column to use to get direction DIRECTION DIRECTION TARGET ENCODER POINTING_OFFSET SOURCE_OFFSET 
01111                 truncate         truncation radius (effective only for 'GAUSS' or 'GJINC') -1pixel 
01112                 gwidth           radius of half maximum for gaussian (effective only for 'GAUSS' or 'GJINC') -1pixel 
01113                 jwidth           c-parameter for jinc function (effective only for 'GJINC') -1pixel 
01114                 
01115         --------------------------------------------------------------------------------
01116                       
01117         """
01118         return _imager.imager_setsdoptions(self, *args, **kwargs)
01119 
01120     def setvp(self, *args, **kwargs):
01121         """
01122         setvp(self, dovp=False, usedefaultvp=True, vptable=string(""), dosquint=False, parangleinc=initialize_variant("360deg"), 
01123             skyposthreshold=initialize_variant("180deg"), telescope=string(""), 
01124             verbose=True) -> bool
01125 
01126         Summary
01127                 Set the voltage pattern model for subsequent processing
01128 
01129         Input Parameters:
01130                 dovp             Do voltage pattern (ie, primary beam) correction false 
01131                 usedefaultvp     Look up the default VP for this telescope and frequency? true 
01132                 vptable          If usedefaultvp is False, provide a VP Table made with vpmanager 
01133                 dosquint         Activate the beam squint in the VP model false 
01134                 parangleinc      Parallactice angle increment for squint application 360deg 
01135                 skyposthreshold  Sky position threshold 180deg 
01136                 telescope        Which default telescope to use; if empty use the one in encoded in MS 
01137                 verbose          If false, suppress some messages from being sent to the logger. true 
01138                 
01139         --------------------------------------------------------------------------------
01140                       
01141         """
01142         return _imager.imager_setvp(self, *args, **kwargs)
01143 
01144     def setweightgrid(self, *args, **kwargs):
01145         """
01146         setweightgrid(self, weight=initialize_variant(""), type=string("imaging")) -> bool
01147 
01148         Summary
01149                 set the requested weight grids
01150 
01151         Input Parameters:
01152                 weight           Numeric array. Required input. 
01153                 type             Type of weight requested imaging 
01154                 
01155         --------------------------------------------------------------------------------
01156                       
01157         """
01158         return _imager.imager_setweightgrid(self, *args, **kwargs)
01159 
01160     def smooth(self, *args, **kwargs):
01161         """
01162         smooth(self, model=std::vector< string >(1, ""), image=std::vector< string >(1, ""), usefit=True, 
01163             bmaj=initialize_variant("5.arcsec"), bmin=initialize_variant("5.arcsec"), 
01164             bpa=initialize_variant("0deg"), normalize=True, async=False) -> bool
01165 
01166         Summary
01167                 Calculate an image smoothed with a Gaussian beam
01168 
01169         Input Parameters:
01170                 model            Name of input model 
01171                 image            Name of output smoothed images 
01172                 usefit           Use the fitted value (rather than that specified true 
01173                 bmaj             Major axis of beam 5.arcsec 
01174                 bmin             Minor axis of beam 5.arcsec 
01175                 bpa              Position angle of beam 0deg 
01176                 normalize        Normalize volume of psf to unity true 
01177                 async            Run asynchronously in the background false 
01178                 
01179         --------------------------------------------------------------------------------
01180                       
01181         """
01182         return _imager.imager_smooth(self, *args, **kwargs)
01183 
01184     def stop(self):
01185         """
01186         stop(self) -> bool
01187 
01188         Summary
01189                 stop the currently executing function asap
01190         --------------------------------------------------------------------------------
01191                       
01192         """
01193         return _imager.imager_stop(self)
01194 
01195     def summary(self):
01196         """
01197         summary(self) -> bool
01198 
01199         Summary
01200                 Summarize the current state of the imager tool
01201         --------------------------------------------------------------------------------
01202                       
01203         """
01204         return _imager.imager_summary(self)
01205 
01206     def uvrange(self, uvmin=0.0, uvmax=0.0):
01207         """
01208         uvrange(self, uvmin=0.0, uvmax=0.0) -> bool
01209 
01210         Summary
01211                 Select data within the limit of a given range
01212 
01213         Input Parameters:
01214                 uvmin            Minimum uv distance allowed (wavelengths) 0.0 
01215                 uvmax            Maximum uv distance allowed (wavelengths) 0.0 
01216                 
01217         --------------------------------------------------------------------------------
01218                       
01219         """
01220         return _imager.imager_uvrange(self, uvmin, uvmax)
01221 
01222     def weight(self, *args, **kwargs):
01223         """
01224         weight(self, type=string("natural"), rmode=string("none"), noise=initialize_variant("0.0Jy"), 
01225             robust=0.0, fieldofview=initialize_variant("0.0arcsec"), npixels=0, mosaic=False, 
01226             async=False) -> bool
01227 
01228         Summary
01229                 Apply additional weighting to the visibility weights
01230 
01231         Input Parameters:
01232                 type             Type of weighting uniform natural briggs radial natural 
01233                 rmode            Mode of briggs weighting norm abs none 
01234                 noise            Noise used in absolute briggs weighting 0.0Jy 
01235                 robust           Parameter in briggs weighting 0.0 
01236                 fieldofview      Field of view for uniform weighting 0.0arcsec 
01237                 npixels          Number of pixels in the u and v directions 0 
01238                 mosaic           Individually weight the fields of a mosaic false 
01239                 async            Run asynchronously in the background false 
01240                 
01241         --------------------------------------------------------------------------------
01242                       
01243         """
01244         return _imager.imager_weight(self, *args, **kwargs)
01245 
01246 imager_swigregister = _imager.imager_swigregister
01247 imager_swigregister(imager)
01248 cvar = _imager.cvar
01249 
01250 # This file is compatible with both classic and new-style classes.
01251 
01252