The width of the Gaussian (for the constructors or the setWidth
function) is always specified in terms of the full width at half
maximum (FWHM). It is always positive and attempts to set a non-positive
width will throw an assertion when in debug mode.
The peak height of the Gaussian can be specified at construction time or
by using the setHeight function. Alternatively the
setFlux function can be used to implicitly set the peak height by
specifying the integrated area under the Gaussian. The height (or flux)
can be positive, negative or zero, as this class makes no assumptions on
what quantity the height represents.
The parameter interface (see
Gaussian1DParam class),
is used to provide an interface to the
Fitting classes.
There are 3 parameters that are used to describe the Gaussian:
An enumeration for the HEIGHT, WIDTH and
CENTER parameter index is provided, enabling the setting
and reading of parameters with the [] operator. The
mask() methods can be used to check and set the parameter masks.
Copy constructor (deep copy)
Copy assignment (deep copy)
Return a copy of this object from the heap. The caller is responsible
for deleting this pointer.
Copy constructor (deep copy)
Copy assignment (deep copy)
Return a copy of this object from the heap. The caller is responsible
for deleting this pointer.
Prerequisite
Etymology
A Gaussian1D functional is designed exclusively for calculating a
Gaussian (or Normal) distribution in one dimension. Other classes exist
for calculating these functions in two
(Gaussian2D) and N
(GaussianND) dimensions.
Synopsis
A Gaussian1D is described by a height, center, and width. Its
fundamental operation is evaluating itself at some x.
The parameters (height, center and width) may be changed at run time.
Changing the width of the Gaussian will not affect
its peak height but will change its flux. So you should always set the
width before setting the flux.
Example
Gaussian<Double> gf(5.0, 25.0, 7);
gf(25); // = 5.0
gf[HEIGHT](1.0);
gf.setWidth(2.0);
gf[CENTER](0.0);
gf(1); // = 0.5*height = 0.5
Template Type Argument Requirements (T)
Thrown Exceptions
To Do
Member Description
Gaussian1D() : Gaussian1DParam<T>()
Constructs the one dimensional Gaussians. Defaults:
height=1, center=0, width(FWHM)=1.
explicit Gaussian1D(const T &height) : Gaussian1DParam<T>(height)
Gaussian1D(const T &height, const T ¢er) : Gaussian1DParam<T>(height, center)
Gaussian1D(const T &height, const T ¢er, const T &width) : center<T>(height, center, width)
Could not use default arguments
that worked both with gcc and IRIX
Gaussian1D(const Gaussian1D<T> &other) : other<T>(other)
template <class W> Gaussian1D(const Gaussian1D<W> &other) : Gaussian1DParam<T>(other)
Gaussian1D<T> &operator=(const Gaussian1D<T> &other)
virtual ~Gaussian1D()
Destructor
virtual T eval(typename Function1D<T>::FunctionArg x) const
Evaluate the Gaussian at x.
virtual Function<T> *clone() const
virtual Function<typename FunctionTraits<T>::DiffType> *cloneAD() const
virtual Function<typename FunctionTraits<T>::BaseType> *cloneNonAD() const
template <class T> class Gaussian1D_PS<AutoDiff<T> > : public Gaussian1DParam<AutoDiff<T> >
Interface
Description
Synopsis
The name Gaussian1D_PS is only for cxx2html
documentation problems. Use Gaussian1D in your code.
Member Description
Gaussian1D_PS() : Gaussian1DParam<AutoDiff<T> >()
Constructs one dimensional Gaussians.
explicit Gaussian1D_PS(const AutoDiff<T> &height) : T<AutoDiff<T> >(height)
Gaussian1D_PS(const AutoDiff<T> &height, const AutoDiff<T> ¢er) : Gaussian1DParam<AutoDiff<T> >(height, center)
Gaussian1D_PS(const AutoDiff<T> &height, const AutoDiff<T> ¢er, const AutoDiff<T> &width) : center<AutoDiff<T> >(height, center, width)
Gaussian1D_PS(const Gaussian1D_PS &other) : Gaussian1DParam<Gaussian1DParam<T> >(other)
template <class W> Gaussian1D_PS(const Gaussian1D_PS<W> &other) : Gaussian1DParam<other<T> >(other)
Gaussian1D_PS<AutoDiff<T> > & operator=(const Gaussian1D_PS<AutoDiff<T> > &other)
virtual ~Gaussian1D_PS()
Destructor
virtual AutoDiff<T> eval(typename Function<AutoDiff<T> >::FunctionArg x) const
Evaluate the Gaussian and its derivatives at x.
virtual Function<AutoDiff<T> > *clone() const
virtual Function<typename FunctionTraits<Traits<T> >::DiffType> *cloneAD() const
virtual Function<typename FunctionTraits<Traits<T> >::BaseType> *cloneNonAD() const