TiledDataStMan.h

Classes

TiledDataStMan -- Tiled Data Storage Manager. (full description)

class TiledDataStMan : public TiledStMan

Interface

Public Members
TiledDataStMan (const String& hypercolumnName, uInt maximumCacheSize = 0)
TiledDataStMan (const String& hypercolumnName, const Record& spec)
~TiledDataStMan()
DataManager* clone() const
String dataManagerType() const
static DataManager* makeObject (const String& dataManagerType, const Record& spec)
Private Members
TiledDataStMan()
TiledDataStMan (const TiledDataStMan&)
TiledDataStMan& operator= (const TiledDataStMan&)
void addRow (uInt nrrow)
void addHypercube (const IPosition& cubeShape, const IPosition& tileShape, const Record& values)
void extendHypercube (uInt incrInLastDim, const Record& values)
virtual TSMCube* getHypercube (uInt rownr)
virtual TSMCube* getHypercube (uInt rownr, IPosition& position)
virtual Bool flush (AipsIO&, Bool fsync)
virtual void create (uInt nrrow)
virtual void readHeader (uInt nrrow, Bool firstTime)
void updateRowMap (uInt cubeNr, uInt incrInLastDim)
void checkNrrow (const IPosition& cubeShape, uInt incrInLastDim) const

Description

Review Status

Reviewed By:
UNKNOWN
Date Reviewed:
before2004/08/25

Prerequisite

Etymology

TiledDataStMan is the Tiled Storage Manager for general data arrays.

Synopsis

TiledDataStMan is a derivation from TiledStMan, the abstract tiled storage manager class. A description of the basics of tiled storage managers is given in the Tables module description.

TiledDataStMan allows the user explicit control over the definition and extension of hypercubes by means of the accessor class TiledDataStManAccessor. The user can determine which row should be put in which hypercube, so it is possible to put row 0-9 in hypercube A, row 10-29 in B, row 30-39 in A again, etc.. This makes it possible to use a tiled storage manager for a data column containing data with different shapes (e.g. line and continuum data). Actually, this storage manager is developed for irregularly shaped UV-data, but can be used for any purpose.
Each extensible hypercube uses a file of its own. This means that there shouldn't be too many of them, otherwise the number of files may get too high.

The TiledDataStMan has the following (extra) properties:

Motivation

This tiled storage manager allows one to create and extend hypercubes as needed. One has complete control over which row is stored in which hypercube.

Example

The following example shows how to create a TiledDataStMan tiled storage manager using the hypercolumn as defined in the table description. Furthermore it shows how to use TiledDataStManAccessor to add a hypercube, while defining its tile shape, coordinates, and id-value. The example shows that reading the data back does not require any knowledge of the data manager. It's exactly the same if another data manager was used.
The table created contains the equally shaped data columns "Data" and "Weight". Each cell in those columns contains a 2D array with shape [12,20]. The coordinates of those arrays are "Pol" and "Freq". The tiled storage manager superimposes two more axes ("Baseline"and "Time") on the data resulting in a 4D hypercube with shape [12,20,30,42]. The table contains 42*30 rows (which has to be equal to the number of elements in the superimposed axes).
The tile shape of the hypercube is (arbitrarily) set to [4,5,6,7]. Of course, any tile shape could be chosen. This tile shape results in a tile size of 6720 bytes (4*5*6*7 *(4+4) bytes), which is not that large (32768 as tile size is very reasonable). The number of tiles is integral in each dimension, so no space is wasted. Finally it makes access along the various axes about equally efficient.
Although in this example only one hypercube is added, multiple hypercubes are possible, because an id column has been defined.
Caution The example uses the global Array function indgen to fill the data and coordinate arrays with arbitrary values.
Note that the description of class ROTiledStManAccessor contains a discussion about the effect of setting the maximum cache size.

  // Define the table description and the columns in it.
  TableDesc td ("", "1", TableDesc::Scratch);
  td.addColumn (ScalarColumnDesc<float>  ("Time"));
  td.addColumn (ScalarColumnDesc<float>  ("Baseline"));
  td.addColumn (ArrayColumnDesc<float>   ("Pol", 1));
  td.addColumn (ArrayColumnDesc<float>   ("Freq", 1));
  td.addColumn (ScalarColumnDesc<String> ("Id"));
  td.addColumn (ArrayColumnDesc<float>   ("Data", 2));
  td.addColumn (ArrayColumnDesc<float>   ("Weight", 2));
  // Define the 4-dim hypercolumn with its data, coordinate and id columns.
  td.defineHypercolumn ("TSMExample",
			  4,
			  stringToVector ("Data,Weight"),
			  stringToVector ("Pol,Freq,Baseline,Time"),
			  stringToVector ("Id"));
  
  // Now create a new table from the description.
  SetupNewTable newtab("tTiledDataStMan_tmp.data", td, Table::New);
  // Create a TiledDataStMan storage manager for the hypercolumn
  // and bind the columns to it.
  TiledDataStMan sm1 ("TSMExample");
  newtab.bindAll (sm1);
  // Create the table with 42*30 rows.
  Table table(newtab, 42*30);
  // Create the accessor to be able to add a hypercube to this
  // storage manager.
  TiledDataStManAccessor accessor(table, "TSMExample");
  // Define the values for the coordinates of the hypercube
  // and put them into the record.
  Vector<float> timeValues(42);
  Vector<float> baselineValues(30);
  Vector<float> freqValues(20);
  Vector<float> polValues(12);
  indgen (timeValues);
  indgen (baselineValues, float(100));
  indgen (freqValues, float(200));
  indgen (polValues, float(300));
  Record hyperDef;
  hyperDef.define ("Time", timeValues);
  hyperDef.define ("Baseline", baselineValues);
  hyperDef.define ("Freq", freqValues);
  hyperDef.define ("Pol", polValues);
  // Define the id value as well.
  hyperDef.define ("Id", "");
  // Now add the hypercube with the given shape, tile shape,
  // and coordinate and id values.
  accessor.addHypercube (IPosition(4,12,20,30,42),
			   IPosition(4,4,5,6,7), hyperDef);
  ArrayColumn<float> data (table, "Data");
  ArrayColumn<float> weight (table, "Weight");
  Matrix<float> array(IPosition(2,12,20));
  uInt i;
  indgen (array);
  // Write some data into the data columns.
  for (i=0; i<30*42; i++) {
	data.put (i, array);
	weight.put (i, array+float(100));
	array += float(200);
  }
  // Prepare for reading the data back.
  // Note that time and baseline are in fact scalar columns. They are
  // superimposed dimensions on the hypercube.
  ROScalarColumn<float> time (table, "Time");
  ROScalarColumn<float> baseline (table, "Baseline");
  ROArrayColumn<float> freq (table, "Freq");
  ROArrayColumn<float> pol (table, "Pol");
  ROScalarColumn<String> id (table, "Id");
  float fValue;
  String sValue;
  for (i=0; i<table.nrow(); i++) {
      data.get (i, array);
      weight.get (i, array);
      pol.get (i, polValues);
      freq.get (i, freqValues);
      baseline.get (i, fValue);
      time.get (i, fValue);
      id.get (i, sValue);
  }
Note that in this example an id column was not necessary, because there is only one hypercube.

The following example is more advanced. Two (extensible) hypercubes are used for line and continuum data. Writing such a data set could be done as shown. Reading it back is the same as above.
In this example the data columns contain line and continuum data. So there are two types of data, each with their own shape and stored in their own (extensible) hypercube. Note that the last dimension of the hypercube shape is set to zero (to make extensible), but the last tile shape dimension has been filled in, because the exact tile shape must be known.
Before each put of the data the appropriate hypercube is extended. Also the time has to be put, which is done (as an example) in two different ways (using an explicit put and using the extendHypercube).

  // Defining TableDesc and storage manager is same as in first example.
  // Create the table.
  Table table(newtab);
  // Create the accessor to be able to add the hypercubes to this
  // storage manager.
  TiledDataStManAccessor accessor(table, "TSMExample");
  // Fill the coordinate values.
  // Note that the time axis of the hypercube will have length 0 to
  // make it extensible. Therefore the time coordinate can only be
  // filled in when the hypercube is extended.
  Vector<float> baselineValues(30);
  Vector<float> freqValuesCont(1);
  Vector<float> freqValuesLine(20);
  Vector<float> polValues(4);
  indgen (baselineValues, float(100));
  indgen (freqValuesLine, float(200));
  indgen (freqValuesCont, float(200));
  indgen (polValues, float(300));
  Record hyperDefLine;
  hyperDefLine.define ("Baseline", baselineValues);
  hyperDefLine.define ("Pol", polValues);
  // Make similar record for line data.
  // Fill the correct id and frequency values for each type.
  // Add the 2 hypercubes.
  Record hyperDefCont (hyperDefLine);
  hyperDefLine.define ("Id", "L");
  hyperDefLine.define ("Freq", freqValuesLine);
  hyperDefCont.define ("Id", "C");
  hyperDefCont.define ("Freq", freqValuesCont);
  // Add the hypercubes.
  // Define their last dimension as zero to make them extensible.
  accessor.addHypercube (IPosition(4,4,20,30,0),
			   IPosition(4,4,5,6,7), hyperDefLine);
  accessor.addHypercube (IPosition(4,4,1,30,0),
			   IPosition(4,4,1,6,7), hyperDefCont);
  ScalarColumn<float> time (table, "Time");
  ScalarColumn<float> baseline (table, "Baseline");
  ArrayColumn<float> freq (table, "Freq");
  ArrayColumn<float> pol (table, "Pol");
  ArrayColumn<float> data (table, "Data");
  ArrayColumn<float> weight (table, "Weight");
  Matrix<float> arrayLine(IPosition(2,4,20));
  Matrix<float> arrayCont(IPosition(2,4,1));
  indgen (arrayLine);
  indgen (arrayCont);
  // Write some data into the data columns.
  // Alternately line and continuum is written.
  // Each hypercube requires 30 rows to be added (i.e. nr of baselines).
  // The last dimension of each hypercube is extended with 1.
  uInt i, j;
  uInt rownr = 0;
  for (i=0; i<42; i++) {
      if (i%2 == 0) {
          table.addRow (30);
          accessor.extendHypercube (1, hyperDefLine);
          time.put (rownr, float(i));
          for (j=0; j<30; j++) {
              data.put (rownr, arrayLine);
              weight.put (rownr, arrayLine);
              rownr++;
          }
      }else{
          table.addRow (30);
          Vector<float> timeValue(1);
          timeValue(0) = float(i);
          hyperDefCont.define ("Time", timeValue);
          accessor.extendHypercube (1, hyperDefCont);
          time.put (rownr, float(i));
          for (j=0; j<30; j++) {
              data.put (rownr, arrayCont);
              weight.put (rownr, arrayCont);
              rownr++;
          }
      }
  }
Note that in this example the time is defined in 2 different ways. The first one by an explicit put, the second one as a record in the extendHypercube call. The second way if the preferred one, although it requires a bit more coding.

Member Description

TiledDataStMan (const String& hypercolumnName, uInt maximumCacheSize = 0)
TiledDataStMan (const String& hypercolumnName, const Record& spec)

Create a TiledDataStMan storage manager for the hypercolumn with the given name. The hypercolumn name is also the name of the storage manager. The given maximum cache size (default is unlimited) is persistent, thus will be reused when the table is read back. Note that the class ROTiledStManAccessor allows one to overwrite the maximum cache size temporarily.
The constructor taking a Record expects fields in the record with the name of the arguments in uppercase. If not defined, their default value is used.

~TiledDataStMan()

DataManager* clone() const

Clone this object. It does not clone TSMColumn objects possibly used.

String dataManagerType() const

Get the type name of the data manager (i.e. TiledDataStMan).

static DataManager* makeObject (const String& dataManagerType, const Record& spec)

Make the object from the type name string. This function gets registered in the DataManager "constructor" map.

TiledDataStMan()

Create a TiledDataStMan. This constructor is private, because it should only be used by makeObject.

TiledDataStMan (const TiledDataStMan&)

Forbid copy constructor.

TiledDataStMan& operator= (const TiledDataStMan&)

Forbid assignment.

void addRow (uInt nrrow)

Add rows to the storage manager. This will only increase the number of rows. When a hypercube is added or extended, it will be checked whether the number of rows is sufficient.

void addHypercube (const IPosition& cubeShape, const IPosition& tileShape, const Record& values)

Add a hypercube. The number of rows in the table must be large enough to accommodate this hypercube. The possible id values must be given in the record, while coordinate values are optional. The field names in the record should match the coordinate and id column names. The last dimension in the cube shape can be zero, indicating that the hypercube is extensible.

void extendHypercube (uInt incrInLastDim, const Record& values)

Extend the hypercube with the given number of elements in the last dimension. The record should contain the id values (to get the correct hypercube) and optionally coordinate values for the elements added.

virtual TSMCube* getHypercube (uInt rownr)

Get the hypercube in which the given row is stored.

virtual TSMCube* getHypercube (uInt rownr, IPosition& position)

Get the hypercube in which the given row is stored. It also returns the position of the row in that hypercube.

virtual Bool flush (AipsIO&, Bool fsync)

Flush and optionally fsync the data. It returns a True status if it had to flush (i.e. if data have changed).

virtual void create (uInt nrrow)

Let the storage manager create files as needed for a new table. This allows a column with an indirect array to create its file.

virtual void readHeader (uInt nrrow, Bool firstTime)

Read the header info.

void updateRowMap (uInt cubeNr, uInt incrInLastDim)

Update the map of row numbers to cube number plus offset.

void checkNrrow (const IPosition& cubeShape, uInt incrInLastDim) const

Check if the table is large enough to hold this hypercube extension.