Line data Source code
1 : //# PBMath1D.cc: Implementation for PBMath1D
2 : //# Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003
3 : //# Associated Universities, Inc. Washington DC, USA.
4 : //#
5 : //# This library is free software; you can redistribute it and/or modify it
6 : //# under the terms of the GNU Library General Public License as published by
7 : //# the Free Software Foundation; either version 2 of the License, or (at your
8 : //# option) any later version.
9 : //#
10 : //# This library is distributed in the hope that it will be useful, but WITHOUT
11 : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 : //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
13 : //# License for more details.
14 : //#
15 : //# You should have received a copy of the GNU Library General Public License
16 : //# along with this library; if not, write to the Free Software Foundation,
17 : //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
18 : //#
19 : //# Correspondence concerning AIPS++ should be adressed as follows:
20 : //# Internet email: aips2-request@nrao.edu.
21 : //# Postal address: AIPS++ Project Office
22 : //# National Radio Astronomy Observatory
23 : //# 520 Edgemont Road
24 : //# Charlottesville, VA 22903-2475 USA
25 : //#
26 : //#
27 : //# $Id$
28 :
29 : #include <casacore/casa/aips.h>
30 : #include <casacore/casa/BasicSL/Complex.h>
31 : #include <casacore/casa/Arrays/Matrix.h>
32 : #include <casacore/casa/Arrays/Vector.h>
33 : #include <synthesis/TransformMachines/PBMath1D.h>
34 :
35 : #include <casacore/images/Regions/ImageRegion.h>
36 : #include <casacore/images/Images/ImageInterface.h>
37 :
38 : #include <components/ComponentModels/SkyComponent.h>
39 : #include <components/ComponentModels/Flux.h>
40 : #include <components/ComponentModels/ComponentShape.h>
41 :
42 : #include <casacore/lattices/Lattices/LatticeIterator.h>
43 : #include <casacore/lattices/Lattices/LatticeStepper.h>
44 : #include <casacore/lattices/LRegions/LCSlicer.h>
45 : #include <casacore/casa/Arrays/IPosition.h>
46 :
47 : #include <casacore/measures/Measures.h>
48 : #include <casacore/measures/Measures/MeasConvert.h>
49 :
50 : #include <casacore/coordinates/Coordinates/CoordinateSystem.h>
51 : #include <casacore/coordinates/Coordinates/DirectionCoordinate.h>
52 : #include <casacore/coordinates/Coordinates/SpectralCoordinate.h>
53 : #include <casacore/coordinates/Coordinates/StokesCoordinate.h>
54 : #include <casacore/coordinates/Coordinates/Projection.h>
55 : #include <casacore/coordinates/Coordinates/CoordinateUtil.h>
56 :
57 : #include <casacore/casa/BasicSL/String.h>
58 : #include <casacore/casa/Utilities/Assert.h>
59 : #include <casacore/casa/Exceptions/Error.h>
60 :
61 :
62 :
63 : using namespace casacore;
64 : namespace casa { //# NAMESPACE CASA - BEGIN
65 :
66 271 : PBMath1D::PBMath1D()
67 271 : : composite_p(2048)
68 : {
69 271 : };
70 :
71 :
72 2290 : PBMath1D::PBMath1D(Quantity maximumRadius,
73 : Quantity refFreq,
74 : Bool isThisVP,
75 : BeamSquint squint,
76 2290 : Bool useSymmetricBeam) :
77 : PBMathInterface(isThisVP, squint, useSymmetricBeam),
78 : wideFit_p(false),maximumRadius_p(maximumRadius),
79 : refFreq_p(refFreq),
80 2290 : composite_p(2048)
81 : {
82 2290 : fScale_p = refFreq_p.getValue("GHz"); // scale is ratio of refFreq_p to 1GHz
83 2290 : refFreq_p = Quantity( 1.0, "GHz"); // internal Ref Freq is now 1GHz
84 : // convert instantiation parameters to GHz*arcmin reference
85 2290 : maximumRadius_p = maximumRadius_p * fScale_p;
86 2290 : scale_p = 1.0/(C::arcmin * C::giga);
87 2290 : };
88 :
89 2543 : PBMath1D::~PBMath1D()
90 : {
91 2543 : };
92 :
93 :
94 :
95 :
96 : ImageRegion*
97 0 : PBMath1D::extent (const ImageInterface<Complex>& in, const MDirection& pointDir,
98 : const Int row, const Float fPad, const Int iChan,
99 : const SkyJones::SizeType sizeType)
100 : {
101 : if (row) {} // Not used yet
102 :
103 0 : CoordinateSystem coords=in.coordinates();
104 :
105 0 : Vector<Float> blc(4);
106 0 : Vector<Float> trc(4);
107 0 : blc.set(0.0);
108 0 : trc.set(0.0);
109 : {
110 : Int stokesIndex, k1, k2;
111 0 : CoordinateUtil::findStokesAxis(stokesIndex, k1, k2, coords);
112 0 : blc(stokesIndex) = 0.0;
113 0 : trc(stokesIndex) = in.shape()(stokesIndex)-1;
114 0 : Int spectralIndex=CoordinateUtil::findSpectralAxis(coords);
115 0 : blc(spectralIndex) = 0.0;
116 0 : trc(spectralIndex) = in.shape()(spectralIndex)-1;
117 : }
118 0 : extentguts(coords, pointDir, fPad, iChan, blc, trc);
119 0 : refineSize(blc, trc, in.shape(), sizeType);
120 0 : LCSlicer lcs( blc, trc );
121 0 : return ( new ImageRegion(lcs) );
122 : };
123 : ImageRegion*
124 0 : PBMath1D::extent (const ImageInterface<Float>& in, const MDirection& pointDir,
125 : const Int row, const Float fPad, const Int iChan,
126 : const SkyJones::SizeType sizeType)
127 : {
128 : if (row) {} // unused
129 0 : CoordinateSystem coords=in.coordinates();
130 0 : Vector<Float> blc(4);
131 0 : Vector<Float> trc(4);
132 0 : blc.set(0.0);
133 0 : trc.set(0.0);
134 : {
135 : Int stokesIndex, k1, k2;
136 0 : CoordinateUtil::findStokesAxis(stokesIndex, k1, k2, coords);
137 0 : blc(stokesIndex) = 0.0;
138 0 : trc(stokesIndex) = in.shape()(stokesIndex)-1;
139 0 : Int spectralIndex=CoordinateUtil::findSpectralAxis(coords);
140 0 : blc(spectralIndex) = 0.0;
141 0 : trc(spectralIndex) = in.shape()(spectralIndex)-1;
142 : }
143 0 : extentguts(coords, pointDir, fPad, iChan, blc, trc);
144 0 : refineSize(blc, trc, in.shape(), sizeType);
145 0 : LCSlicer lcs( blc, trc );
146 0 : return ( new ImageRegion(lcs) );
147 : };
148 :
149 :
150 :
151 352 : Int PBMath1D::support(const CoordinateSystem& cs){
152 352 : Int directionIndex=cs.findCoordinate(Coordinate::DIRECTION);
153 352 : AlwaysAssert(directionIndex>=0, AipsError);
154 : DirectionCoordinate
155 704 : directionCoord=cs.directionCoordinate(directionIndex);
156 :
157 352 : Vector<String> dirunit=directionCoord.worldAxisUnits();
158 :
159 : Double freq;
160 : {
161 352 : Int spectralIndex=cs.findCoordinate(Coordinate::SPECTRAL);
162 352 : AlwaysAssert(spectralIndex>=0, AipsError);
163 : SpectralCoordinate
164 704 : spectralCoord=cs.spectralCoordinate(spectralIndex);
165 :
166 :
167 704 : Vector<String> units(1);
168 352 : units = "Hz";
169 352 : spectralCoord.setWorldAxisUnits(units);
170 :
171 704 : Vector<Double> spectralWorld(1);
172 352 : Vector<Double> spectralPixel(1);
173 352 : spectralPixel(0) = 0;
174 352 : spectralCoord.toWorld(spectralWorld, spectralPixel);
175 352 : freq = spectralWorld(0);
176 : }
177 :
178 :
179 :
180 : // maximumRadius_p: maximum radius at 1 GHz frequency
181 : //Double delta = maximumRadius_p.getValue("rad") * 1.0e+9 / freq;
182 :
183 :
184 : //Number of pix at freq
185 352 : Double numpix=maximumRadius_p.getValue(dirunit(0))/fabs(directionCoord.increment()(0))*2.0*1.0e9/freq ;
186 :
187 :
188 704 : return Int(floor(numpix));
189 :
190 :
191 : }
192 0 : void PBMath1D::refineSize(Vector<Float>& blc, Vector<Float>& trc, const IPosition& shape,
193 : SkyJones::SizeType sizeType)
194 : {
195 : // Round Down and Up for BLC and TRC, make them integers
196 0 : Vector<Bool> blcTrouble(blc.nelements(), false);
197 0 : Vector<Bool> trcTrouble(blc.nelements(), false);
198 0 : Vector<Float> d1(2);
199 0 : Vector<Float> d2(2);
200 :
201 0 : for (Int i=0; i<2; i++) {
202 :
203 0 : blc(i) = (Int)(blc(i));
204 0 : trc(i) = (Int)(trc(i)+0.99); // OK, its ALMOST rounding up
205 :
206 0 : if (blc(i) < 0) {
207 0 : blc(i) = 0;
208 0 : blcTrouble(i) = true;
209 : }
210 0 : if (trc(i) > shape(i)-1) {
211 0 : trc(i) = shape(i)-1;
212 0 : trcTrouble(i) = true;
213 : }
214 :
215 0 : d1(i) = trc(i) - blc(i) + 1;
216 :
217 0 : if (sizeType == SkyJones::POWEROF2) {
218 0 : d2(i) = (Int)( pow( 2.0, (Double)(Int)(log((Double)d1(i))/log(2.0) + 1.0) )+0.01);
219 0 : } else if (sizeType == SkyJones::COMPOSITE) {
220 0 : d2(i) = composite_p.nextLarger( (Int)d1(i) );
221 : } else {
222 0 : d2(i) = d1(i);
223 : }
224 :
225 : // Deal with cases:
226 :
227 0 : if (d2(i) >= shape(i)) {
228 : // requested size doesn't even fit into image:
229 : // ----- revert to image size
230 0 : blc(i) = 0; trc(i) = shape(i)-1;
231 :
232 0 : } else if (blcTrouble(i)) {
233 : // requseted size fits, but buts up against the "bottom";
234 : // ----- make full adjustment to the "top"
235 0 : blc(i) = 0; trc(i) = d2(i)-1;
236 :
237 0 : } else if (trcTrouble(i)) {
238 : // requseted size fits, but buts up against the "top";
239 : // ----- make full adjustment to the "bottom"
240 0 : trc(i) = shape(i)-1; blc(i) = shape(i) - d2(i);
241 :
242 : } else {
243 : // requested subimage does not exceed starting image
244 : // ----- do appropriate thing, based on even or odd
245 0 : Float diff = d2(i) - d1(i);
246 0 : Bool even = (Bool)( (Int)diff == 2 * (Int)(diff/2) );
247 0 : if (even) {
248 0 : blc(i) = blc(i) - diff/2;
249 0 : trc(i) = trc(i) + diff/2;
250 : } else {
251 0 : blc(i) = blc(i) - diff/2 + 0.5;
252 0 : trc(i) = trc(i) + diff/2 + 0.5;
253 : }
254 : }
255 : }
256 0 : };
257 :
258 :
259 :
260 :
261 : void
262 0 : PBMath1D::extentguts (const CoordinateSystem& coords, const MDirection& pointDir,
263 : const Float fPad, const Int iChan, Vector<Float>& blc, Vector<Float>& trc)
264 :
265 : {
266 0 : Int directionIndex=coords.findCoordinate(Coordinate::DIRECTION);
267 0 : AlwaysAssert(directionIndex>=0, AipsError);
268 : DirectionCoordinate
269 0 : directionCoord=coords.directionCoordinate(directionIndex);
270 0 : Vector<String> units(2); units = "deg";
271 0 : directionCoord.setWorldAxisUnits(units);
272 :
273 : // convert to the EPOCH of these coords
274 0 : MDirection::Types t2 = (MDirection::Types) (pointDir.getRef().getType());
275 0 : MDirection pointDirE;
276 0 : if (t2 != directionCoord.directionType()) {
277 0 : MDirection::Convert converter;
278 0 : ObsInfo oi=coords.obsInfo();
279 0 : converter.setOut(MDirection::Ref(directionCoord.directionType(),
280 0 : MeasFrame(oi.obsDate(), oi.telescopePosition())));
281 0 : pointDirE = converter(pointDir);
282 : } else {
283 0 : pointDirE = pointDir;
284 : }
285 :
286 : Double freq;
287 : {
288 0 : Int spectralIndex=coords.findCoordinate(Coordinate::SPECTRAL);
289 0 : AlwaysAssert(spectralIndex>=0, AipsError);
290 : SpectralCoordinate
291 0 : spectralCoord=coords.spectralCoordinate(spectralIndex);
292 :
293 0 : units.resize(1);
294 0 : units = "Hz";
295 0 : spectralCoord.setWorldAxisUnits(units);
296 :
297 0 : Vector<Double> spectralWorld(1);
298 0 : Vector<Double> spectralPixel(1);
299 0 : spectralPixel(0) = iChan;
300 0 : spectralCoord.toWorld(spectralWorld, spectralPixel);
301 0 : freq = spectralWorld(0);
302 : }
303 :
304 0 : Vector<Double> edgeWorld(2);
305 0 : Vector<Double> edge1Pixel(2);
306 0 : Vector<Double> edge2Pixel(2);
307 :
308 :
309 : // maximumRadius_p: maximum radius at 1 GHz frequency
310 0 : Double delta = maximumRadius_p.getValue("rad") * 1.0e+9 / freq;
311 : {
312 0 : MDirection edgeDir( pointDirE );
313 0 : edgeDir.shift( delta, 0.0, true);
314 0 : edgeWorld(0) = edgeDir.getAngle().getValue("deg")(0);
315 0 : edgeWorld(1) = edgeDir.getAngle().getValue("deg")(1);
316 0 : directionCoord.toPixel(edge1Pixel, edgeWorld);
317 : }
318 : {
319 0 : MDirection edgeDir( pointDirE );
320 0 : edgeDir.shift( -delta, 0.0, true);
321 0 : edgeWorld(0) = edgeDir.getAngle().getValue("deg")(0);
322 0 : edgeWorld(1) = edgeDir.getAngle().getValue("deg")(1);
323 0 : directionCoord.toPixel(edge2Pixel, edgeWorld);
324 : }
325 0 : blc(0) = min( edge1Pixel(0), edge2Pixel(0) );
326 0 : trc(0) = max( edge1Pixel(0), edge2Pixel(0) );
327 0 : if (fPad > 0.1) {
328 0 : Float pad = (trc(0) - blc(0)) * (fPad - 1.0)/2;
329 0 : blc(0) = blc(0) - pad;
330 0 : trc(0) = trc(0) + pad;
331 : }
332 : {
333 0 : MDirection edgeDir( pointDirE );
334 0 : edgeDir.shift( 0.0, delta, true);
335 0 : edgeWorld(0) = edgeDir.getAngle().getValue("deg")(0);
336 0 : edgeWorld(1) = edgeDir.getAngle().getValue("deg")(1);
337 0 : directionCoord.toPixel(edge1Pixel, edgeWorld);
338 : }
339 : {
340 0 : MDirection edgeDir( pointDirE );
341 0 : edgeDir.shift( 0.0, -delta, true);
342 0 : edgeWorld(0) = edgeDir.getAngle().getValue("deg")(0);
343 0 : edgeWorld(1) = edgeDir.getAngle().getValue("deg")(1);
344 0 : directionCoord.toPixel(edge2Pixel, edgeWorld);
345 : }
346 0 : blc(1) = min( edge1Pixel(1), edge2Pixel(1) );
347 0 : trc(1) = max( edge1Pixel(1), edge2Pixel(1) );
348 0 : if (fPad > 0.1) {
349 0 : Float pad = (trc(1) - blc(1)) * (fPad - 1.0)/2;
350 0 : blc(1) = blc(1) - pad;
351 0 : trc(1) = trc(1) + pad;
352 : }
353 0 : };
354 :
355 :
356 :
357 :
358 1130 : void PBMath1D::symmetrizeSquintedBeam()
359 : {
360 : // eventually we need to create the 2D squinted RR and LL
361 : // beams and average them. For now, we just return the
362 : // unsquinted beams
363 :
364 1130 : if (vp_p.nelements() == 0) {
365 0 : fillPBArray();
366 : }
367 1130 : esvp_p = vp_p;
368 1130 : };
369 :
370 : ImageInterface<Complex>&
371 3249 : PBMath1D::apply(const ImageInterface<Complex>& in,
372 : ImageInterface<Complex>& out,
373 : const MDirection& pointDir,
374 : const Quantity parAngle,
375 : const BeamSquint::SquintType doSquint,
376 : Bool inverse,
377 : Bool conjugate,
378 : Int iPower,
379 : Float cutoff,
380 : Bool forward)
381 : {
382 9747 : LogIO os(LogOrigin("PBMath1D", "apply"));
383 : // Check that in and out are comparable:
384 3249 : if (in.shape() != out.shape()) {
385 0 : throw(AipsError("PBMath1D::apply(ImageInterface...) - in and out images have different shapes"));
386 : }
387 6498 : CoordinateSystem coords=in.coordinates();
388 3249 : if (!coords.near(out.coordinates()) ) {
389 0 : throw(AipsError("PBMath1D::apply(ImageInterface...) - in and out images have different coordinates"));
390 : }
391 :
392 3249 : Int directionIndex=coords.findCoordinate(Coordinate::DIRECTION);
393 3249 : AlwaysAssert(directionIndex>=0, AipsError);
394 : DirectionCoordinate
395 6498 : directionCoord=coords.directionCoordinate(directionIndex);
396 6498 : Vector<String> units(2); units = "deg";
397 3249 : directionCoord.setWorldAxisUnits(units);
398 :
399 : // convert to the EPOCH of these coords
400 3249 : MDirection::Types t2 = (MDirection::Types) (pointDir.getRef().getType());
401 6498 : MDirection pointDirE;
402 :
403 :
404 3249 : if (t2 != directionCoord.directionType()) {
405 0 : MDirection::Convert converter;
406 0 : ObsInfo oi=coords.obsInfo();
407 0 : converter.setOut(MDirection::Ref(directionCoord.directionType(),
408 0 : MeasFrame(oi.obsDate(), oi.telescopePosition())));
409 0 : pointDirE = converter(pointDir);
410 : } else {
411 3249 : pointDirE = pointDir;
412 : }
413 :
414 3249 : Int stokesIndex=coords.findCoordinate(Coordinate::STOKES);
415 3249 : AlwaysAssert(stokesIndex>=0, AipsError);
416 : StokesCoordinate
417 6498 : stokesCoord=coords.stokesCoordinate(stokesIndex);
418 :
419 3249 : Int spectralIndex=coords.findCoordinate(Coordinate::SPECTRAL);
420 3249 : AlwaysAssert(spectralIndex>=0, AipsError);
421 : SpectralCoordinate
422 6498 : spectralCoord=coords.spectralCoordinate(spectralIndex);
423 :
424 3249 : units.resize(1);
425 3249 : units = "Hz";
426 3249 : spectralCoord.setWorldAxisUnits(units);
427 :
428 3249 : Int nchan=in.shape()(3);
429 :
430 6498 : Vector<Double> pointingCenterWorld(2);
431 6498 : Vector<Double> pointingCenterPixel(2);
432 6498 : Vector<Double> directionPixel(2);
433 :
434 3249 : pointingCenterWorld(0) = pointDirE.getAngle().getValue("deg")(0);
435 3249 : pointingCenterWorld(1) = pointDirE.getAngle().getValue("deg")(1);
436 3249 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
437 6498 : MDirection newpointDirE;
438 6498 : Vector<Double> nonSquintedPointingPixel = pointingCenterPixel.copy();
439 :
440 3249 : os << "pointingCenterWorld " << pointingCenterWorld << LogIO::DEBUGGING;
441 3249 : os << "pointingCenterPixel " << pointingCenterPixel << LogIO::DEBUGGING;
442 :
443 : // Fill in a cache of the frequencies & squints
444 6498 : Vector<Double> spectralWorld(1);
445 6498 : Vector<Double> spectralPixel(1);
446 6498 : Matrix<Double> xSquintPixCache(2, nchan);
447 6498 : Matrix<Double> ySquintPixCache(2, nchan);
448 6498 : Vector<Double> spectralCache(nchan);
449 :
450 : {
451 8423 : for(Int chan=0;chan<nchan;chan++) {
452 5174 : spectralPixel(0)=chan;
453 5174 : if(!spectralCoord.toWorld(spectralWorld, spectralPixel)) {
454 0 : os << "Cannot find frequency for this plane" << LogIO::EXCEPTION;
455 : }
456 5174 : spectralCache(chan)=spectralWorld(0);
457 :
458 :
459 5174 : if (doSquint == BeamSquint::RR || doSquint == BeamSquint::GOFIGURE) {
460 63 : squint_p.getPointingDirection (pointDirE,
461 : parAngle,
462 126 : Quantity(spectralWorld(0),"Hz"),
463 : BeamSquint::RR, newpointDirE);
464 63 : pointingCenterWorld(0) = newpointDirE.getAngle().getValue("deg")(0);
465 63 : pointingCenterWorld(1) = newpointDirE.getAngle().getValue("deg")(1);
466 63 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
467 63 : xSquintPixCache(0, chan) = pointingCenterPixel(0);
468 63 : ySquintPixCache(0, chan) = pointingCenterPixel(1);
469 : } else {
470 5111 : xSquintPixCache(0, chan) = nonSquintedPointingPixel(0);
471 5111 : ySquintPixCache(0, chan) = nonSquintedPointingPixel(1);
472 : }
473 5174 : if (doSquint == BeamSquint::LL || doSquint == BeamSquint::GOFIGURE) {
474 63 : squint_p.getPointingDirection (pointDirE,
475 : parAngle,
476 126 : Quantity(spectralWorld(0),"Hz"),
477 : BeamSquint::LL, newpointDirE);
478 63 : pointingCenterWorld(0) = newpointDirE.getAngle().getValue("deg")(0);
479 63 : pointingCenterWorld(1) = newpointDirE.getAngle().getValue("deg")(1);
480 63 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
481 63 : xSquintPixCache(1, chan) = pointingCenterPixel(0);
482 63 : ySquintPixCache(1, chan) = pointingCenterPixel(1);
483 : } else {
484 5111 : xSquintPixCache(1, chan) = nonSquintedPointingPixel(0);
485 5111 : ySquintPixCache(1, chan) = nonSquintedPointingPixel(1);
486 : }
487 : }
488 : }
489 :
490 : /*
491 : cout << "pointingCenterPixel x,y = " << nonSquintedPointingPixel << endl;
492 : cout << "squinted pointingCenterPixel x,y RR = " << xSquintPixCache(0, 0) << ", "
493 : << ySquintPixCache(0, 0) << endl;
494 : cout << "squinted pointingCenterPixel x,y LL = " << xSquintPixCache(1, 0) << ", "
495 : << ySquintPixCache(1, 0) << endl;
496 : */
497 :
498 : // Iterate through in minimum IO/Memory chunks
499 : //IPosition ncs = in.niceCursorShape();
500 6498 : IPosition ncs=in.shape();
501 3249 : ncs(2) = 1; ncs(3) = 1;
502 9747 : RO_LatticeIterator<Complex> li(in, LatticeStepper(in.shape(), ncs, IPosition(4,0,1,2,3) ) );
503 9747 : LatticeIterator<Complex> oli(out, LatticeStepper(in.shape(), ncs, IPosition(4,0,1,2,3)) );
504 :
505 : // taper no longer appears to be used
506 : //Complex taper;
507 : //Float r2=0.0;
508 : //Float r=0.0;
509 :
510 3249 : Vector<Double> increment = directionCoord.increment();
511 3249 : Int rrplane = -1;
512 3249 : Int llplane = -1;
513 3249 : stokesCoord.toPixel( rrplane, Stokes::RR );
514 3249 : stokesCoord.toPixel( llplane, Stokes::LL );
515 :
516 : /*
517 : cout << "stokes types in image = " << stokesCoord.stokes() << endl;
518 : cout << "rr plane = " << rrplane << " ll plane = " << llplane << endl;
519 :
520 : */
521 : Double xPixel; Double yPixel;
522 :
523 3249 : Int laststokes = -1;
524 3249 : Int lastChan = -1;
525 : Int ichan;
526 : Int istokes;
527 : Int ix0, iy0;
528 : //Int indx;
529 8656 : for(li.reset(),oli.reset();!li.atEnd();li++,oli++) {
530 :
531 10814 : IPosition itsShape(li.matrixCursor().shape());
532 10814 : IPosition loc(li.position());
533 :
534 5407 : ichan = loc(3);
535 5407 : istokes = loc(2);
536 5407 : iy0 = loc(1);
537 5407 : ix0 = loc(0);
538 :
539 : // determine the pointing: RR, LL, or Center? We make a slight mistake
540 : // here since we ignore the difference between the RR beam and the
541 : // RL beam, say. The latter is slightly smaller because of the
542 : // squint. Hence this code should be deprecated in favor of the
543 : // correct 2D version (when mosaicing in polarization)
544 5407 : if ((doSquint == BeamSquint::RR) ||
545 63 : ((doSquint == BeamSquint::GOFIGURE) && (istokes == rrplane)) ) {
546 0 : xPixel = xSquintPixCache(0, ichan);
547 0 : yPixel = ySquintPixCache(0, ichan);
548 5407 : } else if ((doSquint == BeamSquint::LL) ||
549 63 : ((doSquint == BeamSquint::GOFIGURE) && (istokes == llplane)) ) {
550 0 : xPixel = xSquintPixCache(1, ichan);
551 0 : yPixel = ySquintPixCache(1, ichan);
552 : } else {
553 5407 : xPixel = nonSquintedPointingPixel(0);
554 5407 : yPixel = nonSquintedPointingPixel(1);
555 : }
556 :
557 5407 : if (istokes != laststokes) {
558 : //cerr << "Stokes = " << istokes << " pix = " << xPixel << ", " << yPixel << endl;
559 3522 : laststokes = istokes;
560 : }
561 :
562 5407 : Double factor = 60.0 * spectralCache(ichan)/1.0e+9 ; // arcminutes * GHz
563 5407 : Double rmax2 = square( maximumRadius_p.getValue("'") / factor );
564 5407 : if (wideFit_p) {
565 : // fill vp with interpolated values for current frequency
566 1282 : if (ichan!=lastChan) {
567 1282 : nearestVPArray(spectralCache(ichan));
568 1282 : lastChan=ichan;
569 : }
570 : }
571 :
572 10814 : Vector<Float> rx2(itsShape(0));
573 10814 : Vector<Float> ry2(itsShape(1));
574 3779878 : for(Int ix=0;ix<itsShape(0);ix++) {
575 3774471 : rx2(ix) = square( increment(0)*((Double)(ix+ix0) - xPixel) );
576 : }
577 2710788 : for(Int iy=0;iy<itsShape(1);iy++) {
578 2705381 : ry2(iy) = square( increment(1)*((Double)(iy+iy0) - yPixel) );
579 : }
580 :
581 5407 : const Matrix<Complex>& inmat = li.matrixCursor();
582 5407 : Matrix<Complex>& outmat=oli.rwMatrixCursor();
583 :
584 : Bool incopy, outcopy, del;
585 5407 : const Complex * inpoint = inmat.getStorage(incopy);
586 5407 : Complex *outpoint =outmat.getStorage(outcopy);
587 5407 : Float * rx2point = rx2.getStorage(del);
588 5407 : Float * ry2point= ry2.getStorage(del);
589 5407 : Complex* vppoint=vp_p.getStorage(del);
590 5407 : Int nx=itsShape(0);
591 5407 : Int ny=itsShape(1);
592 5407 : Double inverseIncrementRadius=inverseIncrementRadius_p;
593 5407 : #pragma omp parallel default(none) firstprivate(inpoint, outpoint, rx2point, ry2point, vppoint, iPower, conjugate, inverse, forward, nx, ny, rmax2, factor, inverseIncrementRadius, cutoff)
594 : {
595 : #pragma omp for
596 : for(Int iy=0;iy<ny;iy++) {
597 : Float ry2val=ry2point[iy];
598 : applyXLine(inpoint, outpoint , rx2point , vppoint , ry2val, iPower, conjugate, inverse, forward, nx, iy, rmax2,
599 : factor, inverseIncrementRadius, cutoff);
600 : /*for(Int ix=0;ix<itsShape(0);ix++) {
601 :
602 : r2 = rx2(ix) + ry2(iy);
603 :
604 : if (r2 > rmax2) {
605 : oli.rwMatrixCursor()(ix, iy) = 0.0;
606 : } else {
607 : r = sqrt(r2) * factor;
608 : indx = Int(r*inverseIncrementRadius_p);
609 : if (norm(vp_p(indx)) > 0.0) {
610 : if(iPower==2) {
611 : taper = vp_p(indx) * conj(vp_p(indx));
612 : }
613 : else {
614 : taper = vp_p(indx);
615 : }
616 : } else {
617 : taper = 0.0;
618 : }
619 : if (conjugate) {
620 : taper = conj(taper);
621 : }
622 : // Differentiate between forward (Sky->UV) and
623 : // inverse (UV->Sky) - these need different
624 : // applications of the PB
625 : if(!forward) {
626 : taper = conj(taper);
627 : }
628 : if (inverse) {
629 : if (abs(taper) < cutoff ) {
630 : oli.rwMatrixCursor()(ix, iy) = 0.0;
631 : } else {
632 : oli.rwMatrixCursor()(ix, iy) = li.matrixCursor()(ix, iy) / taper ;
633 : }
634 : } else { // not inverse!
635 : oli.rwMatrixCursor()(ix, iy) = li.matrixCursor()(ix, iy) * taper;
636 : }
637 : }
638 : }
639 : */
640 : }
641 : } //end pragma
642 5407 : outmat.putStorage(outpoint, outcopy);
643 5407 : inmat.freeStorage(inpoint, incopy);
644 : }
645 :
646 6498 : return out;
647 :
648 : };
649 :
650 2705381 : void PBMath1D::applyXLine(const Complex*& in, Complex*& out, Float*& rx2, Complex*& vp, const Float ry2, const Int ipower, const Bool conjugate, const Bool inverse, const Bool forward, const Int nx, const Int iy, const Double rmax2, const Double factor, const Double inverseIncrementRadius, const Float cutoff)
651 : {
652 : Float r;
653 : Int indx;
654 2705381 : Complex taper;
655 3178039902 : for(Int ix=0;ix<nx;ix++) {
656 :
657 3175334521 : Float r2 = rx2[ix] + ry2;
658 :
659 3175334521 : if (r2 > rmax2){
660 2045959838 : out[ix+iy*nx] = 0.0;
661 : }
662 : else {
663 1129374683 : r = sqrt(r2) * factor;
664 1129374683 : indx = Int(r*inverseIncrementRadius);
665 1129374683 : if (norm(vp[indx]) > 0.0) {
666 1075476995 : if(ipower==2) {
667 587347498 : taper = vp[indx] * conj(vp[indx]);
668 : }
669 : else {
670 488129497 : taper = vp[indx];
671 : }
672 : } else {
673 53897688 : taper = 0.0;
674 : }
675 1129374683 : if (conjugate) {
676 0 : taper = conj(taper);
677 : }
678 : // Differentiate between forward (Sky->UV) and
679 : // inverse (UV->Sky) - these need different
680 : // applications of the PB
681 1129374683 : if(!forward) {
682 0 : taper = conj(taper);
683 : }
684 1129374683 : if (inverse) {
685 0 : if (abs(taper) < cutoff ) {
686 0 : out[ix+iy*nx] = 0.0;
687 : } else {
688 0 : out[ix+iy*nx] = (in[ix+iy*nx]) / taper ;
689 : }
690 : } else { // not inverse!
691 1129374683 : out[ix+iy*nx] = (in[ix+iy*nx]) * taper ;
692 : }
693 : }
694 : }
695 2705381 : };
696 :
697 : ImageInterface<Float>&
698 40 : PBMath1D::apply(const ImageInterface<Float>& in,
699 : ImageInterface<Float>& out,
700 : const MDirection& pointDir,
701 : const Quantity parAngle,
702 : const BeamSquint::SquintType doSquint,
703 : Float /*cutoff*/, const Int ipower)
704 : {
705 120 : LogIO os(LogOrigin("PBMath1D", "apply"));
706 :
707 : // cout << "PBMath1D::apply: image shape: " << in.shape() << endl;
708 : // Check that in and out are comparable:
709 40 : if (in.shape() != out.shape()) {
710 0 : throw(AipsError("PBMath1D::apply(ImageInterface...) - in and out images have different shapes"));
711 :
712 : }
713 80 : CoordinateSystem coords=in.coordinates();
714 40 : if (!coords.near(out.coordinates())) {
715 0 : throw(AipsError("PBMath1D::apply(ImageInterface...) - in and out images have different coordinates"));
716 : }
717 :
718 40 : Int directionIndex=coords.findCoordinate(Coordinate::DIRECTION);
719 40 : AlwaysAssert(directionIndex>=0, AipsError);
720 : DirectionCoordinate
721 80 : directionCoord=coords.directionCoordinate(directionIndex);
722 80 : Vector<String> units(2); units = "deg";
723 40 : directionCoord.setWorldAxisUnits(units);
724 :
725 : // convert to the EPOCH of these coords
726 40 : MDirection::Types t2 = (MDirection::Types) (pointDir.getRef().getType());
727 80 : MDirection pointDirE(pointDir);
728 :
729 40 : if (t2 != directionCoord.directionType()) {
730 0 : MDirection::Convert converter;
731 0 : ObsInfo oi=coords.obsInfo();
732 0 : converter.setOut(MDirection::Ref(directionCoord.directionType(),
733 0 : MeasFrame(oi.obsDate(), oi.telescopePosition())));
734 0 : pointDirE = converter(pointDir);
735 : } else {
736 40 : pointDirE = pointDir;
737 : }
738 40 : Int stokesIndex=coords.findCoordinate(Coordinate::STOKES);
739 40 : AlwaysAssert(stokesIndex>=0, AipsError);
740 : StokesCoordinate
741 80 : stokesCoord=coords.stokesCoordinate(stokesIndex);
742 :
743 40 : Int spectralIndex=coords.findCoordinate(Coordinate::SPECTRAL);
744 40 : AlwaysAssert(spectralIndex>=0, AipsError);
745 : SpectralCoordinate
746 80 : spectralCoord=coords.spectralCoordinate(spectralIndex);
747 :
748 40 : units.resize(1);
749 40 : units = "Hz";
750 40 : spectralCoord.setWorldAxisUnits(units);
751 :
752 40 : Int nchan=in.shape()(3);
753 :
754 80 : Vector<Double> pointingCenterWorld(2);
755 80 : Vector<Double> pointingCenterPixel(2);
756 80 : Vector<Double> directionPixel(2);
757 :
758 40 : pointingCenterWorld(0) = pointDirE.getAngle().getValue("deg")(0);
759 40 : pointingCenterWorld(1) = pointDirE.getAngle().getValue("deg")(1);
760 40 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
761 80 : MDirection newpointDirE;
762 80 : Vector<Double> nonSquintedPointingPixel = pointingCenterPixel.copy();
763 :
764 40 : os << "pointingCenterWorld " << pointingCenterWorld << LogIO::DEBUGGING;
765 40 : os << "pointingCenterPixel " << pointingCenterPixel << LogIO::DEBUGGING;
766 :
767 : // Fill in a cache of the frequencies & squints
768 80 : Vector<Double> spectralWorld(1);
769 80 : Vector<Double> spectralPixel(1);
770 80 : Matrix<Double> xSquintPixCache(2, nchan); // kludge: prevent errors when nchan = 1
771 80 : Matrix<Double> ySquintPixCache(2, nchan);
772 80 : Vector<Double> spectralCache(nchan);
773 :
774 : {
775 108 : for(Int chan=0;chan<nchan;chan++) {
776 68 : spectralPixel(0)=chan;
777 68 : if(!spectralCoord.toWorld(spectralWorld, spectralPixel)) {
778 0 : os << "Cannot find frequency for this plane" << LogIO::EXCEPTION;
779 : }
780 68 : spectralCache(chan)=spectralWorld(0);
781 :
782 :
783 68 : if (doSquint == BeamSquint::RR || doSquint == BeamSquint::GOFIGURE) {
784 68 : squint_p.getPointingDirection (pointDirE,
785 : parAngle,
786 136 : Quantity(spectralWorld(0),"Hz"),
787 : BeamSquint::RR, newpointDirE);
788 68 : pointingCenterWorld(0) = newpointDirE.getAngle().getValue("deg")(0);
789 68 : pointingCenterWorld(1) = newpointDirE.getAngle().getValue("deg")(1);
790 68 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
791 68 : xSquintPixCache(0, chan) = pointingCenterPixel(0);
792 68 : ySquintPixCache(0, chan) = pointingCenterPixel(1);
793 : } else {
794 0 : xSquintPixCache(0, chan) = nonSquintedPointingPixel(0);
795 0 : ySquintPixCache(0, chan) = nonSquintedPointingPixel(1);
796 : }
797 68 : if (doSquint == BeamSquint::LL || doSquint == BeamSquint::GOFIGURE) {
798 68 : squint_p.getPointingDirection (pointDirE,
799 : parAngle,
800 136 : Quantity(spectralWorld(0),"Hz"),
801 : BeamSquint::LL, newpointDirE);
802 68 : pointingCenterWorld(0) = newpointDirE.getAngle().getValue("deg")(0);
803 68 : pointingCenterWorld(1) = newpointDirE.getAngle().getValue("deg")(1);
804 68 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
805 68 : xSquintPixCache(1, chan) = pointingCenterPixel(0);
806 68 : ySquintPixCache(1, chan) = pointingCenterPixel(1);
807 : } else {
808 0 : xSquintPixCache(1, chan) = nonSquintedPointingPixel(0);
809 0 : ySquintPixCache(1, chan) = nonSquintedPointingPixel(1);
810 : }
811 : }
812 : }
813 :
814 :
815 : // Iterate through in minimum IO/Memory chunks
816 80 : IPosition ncs = in.niceCursorShape();
817 : // IPosition ncs=in.shape();
818 40 : ncs(2) = 1; ncs(3) = 1;
819 40 : ncs(2) = 1; ncs(3) = 1;
820 120 : RO_LatticeIterator<Float> li(in, LatticeStepper(in.shape(), ncs, IPosition(4,0,1,2,3) ) );
821 120 : LatticeIterator<Float> oli(out, LatticeStepper(in.shape(), ncs, IPosition(4,0,1,2,3)) );
822 :
823 : //Vector<Float> taper(vp_p.nelements());
824 40 : Float taper=0.0;
825 40 : Float r2=0.0;
826 40 : Float r=0.0;
827 :
828 40 : Vector<Double> increment = directionCoord.increment();
829 40 : Int rrplane = -1;
830 40 : Int llplane = -1;
831 40 : stokesCoord.toPixel( rrplane, Stokes::RR );
832 40 : stokesCoord.toPixel( llplane, Stokes::LL );
833 :
834 : Double xPixel; Double yPixel;
835 :
836 40 : Int laststokes = -1;
837 40 : Int lastChan = -1;
838 : Int ichan;
839 : Int istokes;
840 : Int ix0, iy0;
841 : Int indx;
842 :
843 108 : for(li.reset(),oli.reset();!li.atEnd();li++,oli++) {
844 :
845 136 : IPosition itsShape(li.matrixCursor().shape());
846 136 : IPosition loc(li.position());
847 :
848 68 : ichan = loc(3);
849 68 : istokes = loc(2);
850 68 : iy0 = loc(1);
851 68 : ix0 = loc(0);
852 :
853 : // determine the pointing: RR, LL, or Center?
854 68 : if ((doSquint == BeamSquint::RR) ||
855 68 : ((doSquint == BeamSquint::GOFIGURE) && (istokes == rrplane)) ) {
856 0 : xPixel = xSquintPixCache(0, ichan);
857 0 : yPixel = ySquintPixCache(0, ichan);
858 68 : } else if ((doSquint == BeamSquint::LL) ||
859 68 : ((doSquint == BeamSquint::GOFIGURE) && (istokes == llplane ))) {
860 0 : xPixel = xSquintPixCache(1, ichan);
861 0 : yPixel = ySquintPixCache(1, ichan);
862 : } else {
863 68 : xPixel = nonSquintedPointingPixel(0);
864 68 : yPixel = nonSquintedPointingPixel(1);
865 : }
866 :
867 68 : if (istokes != laststokes) {
868 : // cout << "Stokes = " << istokes << " pix = " << xPixel << ", " << yPixel << endl;
869 40 : laststokes = istokes;
870 : }
871 :
872 68 : Double factor = 60.0 * spectralCache(ichan)/1.0e+9 ; // arcminutes * GHz
873 68 : Double rmax2 = square( maximumRadius_p.getValue("'") / factor );
874 68 : if (wideFit_p) {
875 : // fill vp with interpolated values for current frequency
876 0 : if (ichan!=lastChan) {
877 0 : nearestVPArray(spectralCache(ichan));
878 0 : lastChan = ichan;
879 : }
880 : }
881 :
882 : //taper.set(0.0);
883 : /*for (uInt inda=0; inda < vp_p.nelements(); ++inda){
884 : if (norm(vp_p(inda)) > 0.0) {
885 : taper[inda] = real(vp_p(inda)) * real(vp_p(inda)) + imag(vp_p(inda))*imag(vp_p(inda));
886 : if(ipower==4)
887 : taper[inda] *= taper[inda];
888 : }
889 :
890 : }
891 : */
892 :
893 136 : Vector<Float> rx2(itsShape(0));
894 136 : Vector<Float> ry2(itsShape(1));
895 135868 : for(Int ix=0;ix<itsShape(0);ix++) {
896 135800 : rx2(ix) = square( increment(0)*((Double)(ix+ix0) - xPixel) );
897 : }
898 135868 : for(Int iy=0;iy<itsShape(1);iy++) {
899 135800 : ry2(iy) = square( increment(1)*((Double)(iy+iy0) - yPixel) );
900 : }
901 :
902 135868 : for(Int iy=0;iy<itsShape(1);iy++) {
903 1036796200 : for(Int ix=0;ix<itsShape(0);ix++) {
904 :
905 1036660400 : r2 = rx2(ix) + ry2(iy);
906 1036660400 : if (r2 > rmax2) {
907 1032186012 : oli.rwMatrixCursor()(ix, iy) = 0.0;
908 : } else {
909 4474388 : r = sqrt(r2) * factor;
910 4474388 : indx = Int(r*inverseIncrementRadius_p);
911 4474388 : if (norm(vp_p(indx)) > 0.0) {
912 4474388 : taper = real(vp_p(indx)) * real(vp_p(indx))+ imag(vp_p(indx)) * imag(vp_p(indx));
913 4474388 : if(ipower==4)
914 4474388 : taper *= taper;
915 : }
916 : //else {
917 : // taper = 0.0;
918 : //}
919 4474388 : oli.rwMatrixCursor()(ix, iy) = li.matrixCursor()(ix,iy) * taper;
920 : }
921 : }
922 : }
923 : }
924 80 : return out;
925 :
926 : };
927 :
928 : // Behavior: doSquint == RR or LL don't make sense here
929 : //
930 : //
931 :
932 : SkyComponent&
933 2491 : PBMath1D::apply(SkyComponent& in,
934 : SkyComponent& out,
935 : const MDirection& pointDir,
936 : const Quantity frequency,
937 : const Quantity parAngle,
938 : const BeamSquint::SquintType doSquint,
939 : Bool inverse,
940 : Bool conjugate,
941 : Int iPower,
942 : Float cutoff,
943 : Bool /*forward*/)
944 : {
945 : // if ( doSquint == NONE ) we can deal with any polarisation representation
946 : // if ( doSquint == GOFIGURE) an exception is thrown if polarisation is not CIRCULAR
947 : // if ( doSquint == RR || doSquint == LL ) an exception is thrown,
948 : // as it is not valid to apply the RR or LL squint to ALL polarisations
949 :
950 : // Also: we can do nothing with spectral index models
951 :
952 :
953 : // convert to the EPOCH of these coords
954 2491 : MDirection::Types t1 = (MDirection::Types) (in.shape().refDirection().getRef().getType());
955 2491 : MDirection::Types t2 = (MDirection::Types) (pointDir.getRef().getType());
956 :
957 4982 : MDirection pointDirE;
958 2491 : if ( t1 != t2) {
959 0 : MDirection::Convert converter;
960 0 : converter.setOut( t1 );
961 0 : pointDirE = converter(pointDir);
962 : } else {
963 2491 : pointDirE = pointDir;
964 : }
965 :
966 2491 : if (doSquint == BeamSquint::RR || doSquint == BeamSquint::LL) {
967 0 : throw(AipsError("PBMath1D::apply(SkyComponent...) - cannot force a SkyComponent to have Squint RR or LL"));
968 : }
969 2491 : if (doSquint == BeamSquint::GOFIGURE) {
970 2491 : if (in.flux().pol() != ComponentType::CIRCULAR) {
971 397 : in.flux().convertPol(ComponentType::CIRCULAR);
972 : }
973 : }
974 :
975 4982 : Vector<DComplex> compFluxIn = in.flux().value();
976 4982 : Vector<DComplex> compFlux = out.flux().value();
977 2491 : compFlux = compFluxIn.copy();
978 :
979 : // Find the direction of the component
980 4982 : MDirection compDir = in.shape().refDirection();
981 :
982 : // Now taper all polarizations appropriately
983 :
984 : // Sort out any frequency interpolation
985 : //Int ifit=0;
986 : //Float lfit=0;
987 : //Int nFreq=wFreqs_p.nelements();
988 2491 : if (wideFit_p) {
989 0 : Double freq = frequency.getValue("Hz");
990 0 : nearestVPArray(freq);
991 : /* for (ifit=0; ifit<nFreq; ifit++) {
992 : if (freq<=wFreqs_p(ifit)) break;
993 : }
994 : if (ifit>0 && ifit<nFreq) {
995 : lfit=(freq-wFreqs_p(ifit-1)) / (wFreqs_p(ifit)-wFreqs_p(ifit-1));
996 : }
997 : */
998 : }
999 :
1000 2491 : MDirection newpointDirE;
1001 12455 : for (Int pol=0;pol<4;pol++) {
1002 9964 : Stokes::StokesTypes stokes=Stokes::type(pol+5);
1003 :
1004 9964 : if (stokes == Stokes::RR && doSquint == BeamSquint::GOFIGURE) {
1005 2491 : squint_p.getPointingDirection (pointDirE, parAngle, frequency, BeamSquint::RR,
1006 : newpointDirE );
1007 7473 : } else if (stokes == Stokes::LL && doSquint == BeamSquint::GOFIGURE) {
1008 2491 : squint_p.getPointingDirection (pointDirE, parAngle, frequency, BeamSquint::LL,
1009 : newpointDirE );
1010 : } else {
1011 4982 : newpointDirE = pointDirE;
1012 : }
1013 :
1014 19928 : MVDirection mvd1( compDir.getAngle() );
1015 19928 : MVDirection mvd2( newpointDirE.getAngle() );
1016 19928 : Quantity sep = mvd1.separation(mvd2, "'");
1017 9964 : double r = sep.getValue("'") * frequency.getValue("Hz") / 1.0e+9; // arcminutes * GHz
1018 9964 : Complex taper;
1019 9964 : Int ir = Int(r*inverseIncrementRadius_p);
1020 : //vp_p is interpolated wvp_p from above
1021 9964 : Complex vpVal = ir >= Int(vp_p.nelements()) ? Complex(0) : vp_p(ir);
1022 : /*if (wideFit_p) {
1023 : if (ifit==0) {
1024 : vpVal = wbvp_p(ir,0);
1025 : } else if (ifit==nFreq) {
1026 : vpVal = wbvp_p(ir,nFreq-1);
1027 : } else {
1028 : vpVal = wbvp_p(ir,ifit-1)*(1-lfit) + wbvp_p(ir,ifit)*lfit;
1029 : }
1030 : }
1031 : */
1032 :
1033 9964 : if (r > maximumRadius_p.getValue("'")) {
1034 192 : compFlux(pol) = 0.0;
1035 : } else {
1036 9772 : if (norm(vpVal) > 0.0) {
1037 9772 : if(iPower>1){
1038 9772 : taper=vpVal*conj(vpVal);
1039 9772 : if(iPower==4)
1040 0 : taper*=taper;
1041 : }
1042 : else{
1043 0 : taper = vpVal;
1044 : //taper = pow( vp_p(Int(r*inverseIncrementRadius_p)), (Float)iPower);
1045 : }
1046 : } else {
1047 0 : taper = 0.0;
1048 : }
1049 9772 : if (conjugate) {
1050 0 : taper = conj(taper);
1051 : }
1052 9772 : if (inverse) {
1053 0 : if (abs(taper) < cutoff ) {
1054 0 : compFlux(pol) = 0.0;
1055 : } else {
1056 0 : compFlux(pol) /= taper ;
1057 : }
1058 : } else { // not inverse!
1059 9772 : compFlux(pol) *= taper;
1060 : }
1061 : }
1062 : }
1063 :
1064 : // Set the output component fluxes
1065 2491 : out = in.copy();
1066 2491 : out.flux().setValue(compFlux);
1067 :
1068 4982 : return out;
1069 :
1070 : };
1071 :
1072 17 : void PBMath1D::summary(Int nValues)
1073 : {
1074 34 : String name;
1075 17 : namePBClass(name);
1076 34 : LogIO os(LogOrigin("PBMath1D", "summary"));
1077 17 : os << "Using " << name << " PB Class " << LogIO::POST;
1078 17 : PBMathInterface::summary(nValues);
1079 :
1080 17 : if (nValues > 0) {
1081 0 : os << "Primary Beam Sampled Data: " << LogIO::POST;
1082 0 : os << " r['] pb[@ 1 GHz] " << LogIO::POST;
1083 0 : Vector<Float> rr;
1084 0 : Vector<Float> pb;
1085 0 : viewPB(rr, pb, nValues);
1086 0 : for (Int ii=0;ii<nValues;ii++) {
1087 0 : os << rr(ii) << " " << pb(ii) << LogIO::POST;
1088 : }
1089 : }
1090 : os << "Max Radius at " << refFreq_p.getValue("GHz") << " GHz: "
1091 17 : << maximumRadius_p.getValue("'") << " arcmin " << LogIO::POST;
1092 :
1093 17 : };
1094 :
1095 :
1096 628 : Bool PBMath1D::ok()
1097 : {
1098 628 : if (vp_p.nelements() == 0) {
1099 0 : return false;
1100 628 : } else if (maximumRadius_p.getValue() <= 0.0) {
1101 0 : return false;
1102 628 : } else if (refFreq_p.getValue() <= 0.0) {
1103 0 : return false;
1104 628 : } else if (inverseIncrementRadius_p <= 0.0) {
1105 0 : return false;
1106 : } else {
1107 628 : return true;
1108 : }
1109 : };
1110 :
1111 :
1112 0 : void PBMath1D::viewPB(Vector<Float>& r, Vector<Float>& pb, Int n_pb, const Double freq)
1113 : {
1114 0 : r.resize(n_pb);
1115 0 : pb.resize(n_pb);
1116 0 : if(wideFit_p)
1117 0 : nearestVPArray(freq);
1118 0 : Int nSamples= vp_p.nelements();
1119 0 : for (Int i=0; i< n_pb; i++) {
1120 0 : pb(i) = norm( vp_p( (Int) ((nSamples-1)* (((Float)i)/(n_pb-1) ) ) ) );
1121 0 : r(i) = maximumRadius_p.getValue("'") * (((Float)i)/(n_pb-1));
1122 : }
1123 :
1124 0 : };
1125 0 : void PBMath1D::nearestVPArray(Double freq, bool printINFO){
1126 0 : LogIO os(LogOrigin("PBMATH1D", "nearestVPArray"));
1127 0 : Int ifit=0;
1128 :
1129 0 : Int nFreq=wFreqs_p.nelements();
1130 0 : for (ifit=0; ifit<nFreq; ifit++) {
1131 0 : if (freq <=wFreqs_p(ifit)) break;
1132 : }
1133 0 : if(printINFO)
1134 0 : os << LogIO::NORMAL1 << "Using beam model of frequency " << ((ifit==nFreq) ? wFreqs_p(nFreq-1) : wFreqs_p(ifit)) << " MHz " << LogIO::POST;
1135 0 : if (ifit==0) {
1136 0 : vp_p = wbvp_p.column(0);
1137 0 : } else if (ifit==nFreq) {
1138 0 : vp_p = wbvp_p.column(nFreq-1);
1139 : } else {
1140 0 : Float l = (freq - wFreqs_p(ifit-1))/
1141 0 : (wFreqs_p(ifit)-wFreqs_p(ifit-1));
1142 0 : vp_p = wbvp_p.column(ifit-1)*(1-l) + wbvp_p.column(ifit)*l;
1143 : }
1144 :
1145 :
1146 0 : }
1147 :
1148 : } //# NAMESPACE CASA - END
1149 :
|