LCOV - code coverage report
Current view: top level - synthesis/fortran - faccumulateFromGrid.f (source / functions) Hit Total Coverage
Test: casa_coverage.info Lines: 0 22 0.0 %
Date: 2023-10-25 08:47:59 Functions: 0 1 0.0 %

          Line data    Source code
       1           0 :       subroutine faccumulateFromGrid(nvalue, norm,grid, convFuncV,
       2             :      $     wVal, scaledSupport, scaledSampling, 
       3             :      $     off, convOrigin, cfShape, loc,
       4             :      $     igrdpos,  sinDPA, cosDPA,
       5             :      $     finitePointingOffset,
       6           0 :      $     phaseGrad,
       7             :      $     phasor,
       8             :      $     imNX, imNY, imNP, imNC,
       9             :      $     cfNX, cfNY, cfNP, cfNC,
      10             :      $     phNX, phNY)
      11             : 
      12             :       implicit none
      13             :       integer imNX, imNY, imNC, imNP,
      14             :      $     vNX, vNY, vNC, vNP,
      15             :      $     cfNX, cfNY, cfNP, cfNC,
      16             :      $     phNX, phNY
      17             : 
      18             :       complex grid(imNX, imNY, imNP, imNC)
      19             :       complex convFuncV(cfNX, cfNY, cfNP, cfNC)
      20             :       complex nvalue
      21             :       double precision wVal
      22             :       integer scaledSupport(2)
      23             :       real scaledSampling(2)
      24             :       double precision off(2)
      25             :       integer convOrigin(4), cfShape(4), loc(4), igrdpos(4)
      26             :       double precision sinDPA, cosDPA
      27             :       integer finitePointingOffset
      28             :       complex norm
      29             :       complex phaseGrad(phNX, phNY),phasor
      30             : 
      31             :       integer l_phaseGradOriginX, l_phaseGradOriginY
      32             :       integer iloc(4), iCFPos(4)
      33             :       complex wt
      34             :       integer ix,iy
      35             :       integer l_igrdpos(4)
      36             : 
      37             :       data iloc/1,1,1,1/, iCFPos/1,1,1,1/
      38           0 :       l_igrdpos(3) = igrdpos(3)+1
      39           0 :       l_igrdpos(4) = igrdpos(4)+1
      40           0 :       l_phaseGradOriginX=phNX/2 + 1
      41           0 :       l_phaseGradOriginY=phNY/2 + 1
      42             : 
      43           0 :       do iy=-scaledSupport(2),scaledSupport(2) 
      44           0 :          iloc(2)=nint(scaledSampling(2)*iy+off(2)-1)
      45           0 :          iCFPos(2)=iloc(2)+convOrigin(2)+1
      46           0 :          l_igrdpos(2) = loc(2)+iy+1
      47           0 :          do ix=-scaledSupport(1),scaledSupport(1)
      48           0 :             iloc(1)=nint(scaledSampling(1)*ix+off(1)-1)
      49           0 :             iCFPos(1) = iloc(1) + convOrigin(1) + 1
      50           0 :             l_igrdpos(1) = loc(1) + ix + 1
      51             : C            
      52             : C Conjugate the CF to account for the W-term and poln. squint.  This is
      53             : C the equivalent of the A^\dag operator in the A-Projection paper (A&A 487,
      54             : C 419-429 (2008); http://arxiv.org/abs/0805.0834) for the antenna optics (plus
      55             : C geometric effects like the w-term) 
      56             : C
      57             :             wt = convFuncV(iCFPos(1), iCFPos(2), 
      58           0 :      $           iCFPos(3), iCFPos(4))
      59           0 :             if (wVal .le. 0.0)  wt = conjg(wt)
      60             :             
      61           0 :             norm = norm + (wt)
      62             : C
      63             : C     Apply the conjugate of the phase gradient.  This, along with
      64             : C     conjg(phasor) later, is the equivalent of applying the A^\dag
      65             : C     operator in the A-Projection paper for mosaic imaging.
      66             : C
      67           0 :             if (finitePointingOffset .eq. 1) then
      68             :                wt = wt * conjg(phaseGrad(iloc(1) + l_phaseGradOriginX, 
      69           0 :      $              iloc(2) + l_phaseGradOriginY))
      70             :             endif
      71             : 
      72             :             nvalue = nvalue + wt * grid(l_igrdpos(1), l_igrdpos(2), 
      73           0 :      $           l_igrdpos(3), l_igrdpos(4))
      74             : 
      75             :          enddo
      76             :       enddo
      77             : c     nvalue = nvalue *conjg(phasor)/norm
      78             : c     Normalization by norm is done in the Mueller loop in AWVR.
      79           0 :       nvalue = nvalue *conjg(phasor)
      80           0 :       end

Generated by: LCOV version 1.16