LCOV - code coverage report
Current view: top level - calanalysis/CalAnalysis - CalStatsFitter.cc (source / functions) Hit Total Coverage
Test: ctest_coverage.info Lines: 0 204 0.0 %
Date: 2023-11-02 14:27:30 Functions: 0 11 0.0 %

          Line data    Source code
       1             : 
       2             : // -----------------------------------------------------------------------------
       3             : 
       4             : /*
       5             : 
       6             : CalStatsFitter.cc
       7             : 
       8             : Description:
       9             : ------------
      10             : This file contains member functions for the CalStatsFitter class.
      11             : 
      12             : Classes:
      13             : --------
      14             : CalStatsFitter - This class contains the fit statistics static enums and
      15             : functions.
      16             : 
      17             : Modification history:
      18             : ---------------------
      19             : 2011 Dec 08 - Nick Elias, NRAO
      20             :               Initial version.
      21             : 2012 Jan 25 - Nick Elias, NRAO
      22             :               Error checking added.
      23             : 
      24             : */
      25             : 
      26             : // -----------------------------------------------------------------------------
      27             : // Includes
      28             : // -----------------------------------------------------------------------------
      29             : 
      30             : #include <calanalysis/CalAnalysis/CalStatsFitter.h>
      31             : 
      32             : // -----------------------------------------------------------------------------
      33             : // Start of casa namespace
      34             : // -----------------------------------------------------------------------------
      35             : 
      36             : using namespace casacore;
      37             : namespace casa {
      38             : 
      39             : // -----------------------------------------------------------------------------
      40             : // Start of CalStatsFitter class
      41             : // -----------------------------------------------------------------------------
      42             : 
      43             : /*
      44             : 
      45             : CalStatsFitter
      46             : 
      47             : Description:
      48             : ------------
      49             : This class contains the fit statistics static enums and functions.
      50             : 
      51             : NB: At present, this class acts as a namespace for static functions.
      52             : 
      53             : Classes:
      54             : --------
      55             : CalStatsFitter - This class contains the fit statistics enums and functions.
      56             : 
      57             : Class public static member functions:
      58             : -------------------------------------
      59             : fit        - This member function is the fitting interface of this class.
      60             : orderName  - This function returns the string corresponding to the
      61             :              CalStatsFitter::ORDER enum.
      62             : typeName   - This function returns the string corresponding to the
      63             :              CalStatsFitter::TYPE enum.
      64             : weightName - This function returns the string corresponding to the
      65             :              CalStatsFitter::WEIGHT enum.
      66             : 
      67             : Class private static member functions (least-squares fitting):
      68             : --------------------------------------------------------------
      69             : lsqFit - This member function calculates polynomial least-squares fits.
      70             : 
      71             : Class private static member functions (robust fitting):
      72             : -------------------------------------------------------
      73             : robustFit - This member function calculates polynomial robust fits.
      74             : slope     - This member function calculates the robust slope.
      75             : brackFunc - This member function is root-finding bracketing function used to
      76             :             determine the slope.
      77             : signum    - This member function calculates the signum function (scalar).
      78             : signum    - This member function calculates the signum function (vector).
      79             : theil     - This member function estimates the slope and slope error using
      80             :             Theil's method.
      81             : 
      82             : Modification history:
      83             : ---------------------
      84             : 2011 Dec 08 - Nick Elias, NRAO
      85             :               Initial version created with enums ORDER, TYPE, and WEIGHT; public
      86             :               static member functions init() and fit(); and private static
      87             :               member functions lsqFit(), robustFit(), numDataWeight(), slope(),
      88             :               brackFunc(), signum() (scalar), and signum() (vector).
      89             : 2011 Dec 11 - Nick Elias, NRAO
      90             :               Added value, value error, and model vectors to the FIT structure.
      91             :               Added dealloc() (pointer) and dealloc() (reference) public static
      92             :               member functions.
      93             : 2011 Dec 21 - Nick Elias, NRAO
      94             :               Public static member functions init() and dealloc() removed
      95             :               because all of their duties are subsumed by the nested class
      96             :               FIT (it used used to be a structure).
      97             : 2012 Jan 24 - Nick Elias, NRAO
      98             :               Private static member function theil() added.  Private static
      99             :               member function numDataWeight() removed because initial robust
     100             :               estimates of fit parameters (before final "trimmed" least squares)
     101             :               no longer employ weighting.
     102             : 2012 Mar 06 - Nick Elias, NRAO
     103             :               Static public member functions orderName(), typeName(), and
     104             :               weightName() added.
     105             : 
     106             : */
     107             : 
     108             : // -----------------------------------------------------------------------------
     109             : // Start of CalStatsFitter public static member functions
     110             : // -----------------------------------------------------------------------------
     111             : 
     112             : /*
     113             : 
     114             : CalStatsFitter::fit
     115             : 
     116             : Description:
     117             : ------------
     118             : This member function is the fitting interface of this class.
     119             : 
     120             : NB: If there are no errors, the value error vector should contain all 1.0
     121             : elements.
     122             : 
     123             : NB: There is no robust quadratic fit available.
     124             : 
     125             : NB: The trim factor required for member function robustFit() is set to 5.0.  It
     126             : is not part of the argument list for this member function.
     127             : 
     128             : Inputs:
     129             : -------
     130             : oAbs      - This reference to a Vector<Double> instance contains the abscissae.
     131             : oValue    - This reference to a Vector<Double> instance contains the values.
     132             : oValueErr - This reference to a Vector<Double> instance contains the value
     133             :             errors.
     134             : oFlag     - This reference to a Vector<Bool> instance contains the flags.
     135             : eOrder    - This reference to a CalStatsFitter::ORDER enum contains the fit
     136             :             order (CalStatsFitter::AVERAGE = average fit, CalStatsFitter::LINEAR
     137             :             = linear fit, CalStatsFitter::QUADRATIC = quadratic fit).
     138             : eType     - This reference to a CalStatsFitter::TYPE enum contains the fit type
     139             :             (CalStatsFitter::LSQ = least squares,
     140             :             CalStatsFitter::ROBUST = robust).
     141             : eWeight   - This reference to a CalStatsFitter::WEIGHT enum contains the weight
     142             :             flag (CalStatsFitter::YES = apply weights, CalStatsFitter::NO = don't
     143             :             apply weights).
     144             : 
     145             : Outputs:
     146             : --------
     147             : oFlag - This reference to a Vector<Bool> instance contains the flags.
     148             : The reference to the FIT structure, returned via the function value.
     149             : 
     150             : Modification history:
     151             : ---------------------
     152             : 2011 Dec 08 - Nick Elias, NRAO
     153             :               Initial version.
     154             : 2012 Jan 25 - Nick Elias, NRAO
     155             :               Error checking added.
     156             : 
     157             : */
     158             : 
     159             : // -----------------------------------------------------------------------------
     160             : 
     161           0 : CalStatsFitter::FIT CalStatsFitter::fit( const Vector<Double>& oAbs,
     162             :     const Vector<Double>& oValue, const Vector<Double>& oValueErr,
     163             :     Vector<Bool>& oFlag, const ORDER& eOrder, const TYPE& eType,
     164             :     const WEIGHT& eWeight ) {
     165             : 
     166             :   // Calculate the desired fit and populate the pointer to the FIT structure
     167             : 
     168           0 :   CalStatsFitter::FIT fit;
     169             : 
     170           0 :   switch ((uInt) eType) {
     171             : 
     172           0 :     case (uInt) LSQ:
     173             :       try {
     174           0 :         fit = CalStatsFitter::FIT( lsqFit( oAbs, oValue, oValueErr, oFlag,
     175           0 :                                            eOrder, eWeight ) );
     176             :       }
     177           0 :       catch ( AipsError oAE ) {
     178           0 :         throw( oAE );
     179             :       }
     180           0 :       fit.eOrder = eOrder;
     181           0 :       fit.eType = eType;
     182           0 :       fit.eWeight = eWeight;
     183           0 :       break;
     184             : 
     185           0 :     case (uInt) ROBUST:
     186           0 :       switch ((uInt) eOrder) {
     187           0 :         case (uInt) AVERAGE:
     188             :         case (uInt) LINEAR:
     189             :           try {
     190           0 :             fit = CalStatsFitter::FIT( robustFit( oAbs, oValue, oValueErr, oFlag, eOrder,
     191           0 :                                                   eWeight, 5.0 ) );
     192             :           }
     193           0 :           catch ( AipsError oAE ) {
     194           0 :             throw( oAE );
     195             :           }
     196           0 :           fit.eOrder = eOrder;
     197           0 :           fit.eType = eType;
     198           0 :           fit.eWeight = eWeight;
     199           0 :           break;
     200           0 :         case (uInt) QUADRATIC:
     201             :         default:
     202           0 :           throw( AipsError( "No quadratic robust fit available" ) );
     203             :           break;
     204             :       }
     205           0 :       break;
     206             : 
     207           0 :     default:
     208           0 :       throw( AipsError( "Invalid type of fit" ) );
     209             :       break;
     210             : 
     211             :   }
     212             : 
     213             : 
     214             :   // Return the FIT structure
     215             : 
     216           0 :   return fit;
     217             : 
     218             : }
     219             : 
     220             : // -----------------------------------------------------------------------------
     221             : 
     222             : /*
     223             : 
     224             : CalStats::orderName
     225             : 
     226             : Description:
     227             : ------------
     228             : This function returns the string corresponding to the CalStatsFitter::ORDER
     229             : enum.
     230             : 
     231             : Inputs:
     232             : -------
     233             : eOrder - This reference to the CalStatsFitter::ORDER enum.
     234             : 
     235             : Outputs:
     236             : --------
     237             : The order string, returned via the function value.
     238             : 
     239             : Modification history:
     240             : ---------------------
     241             : 2012 Mar 06 - Nick Elias, NRAO
     242             :               Initial version.
     243             : 
     244             : */
     245             : 
     246             : // -----------------------------------------------------------------------------
     247             : 
     248           0 : String CalStatsFitter::orderName( const CalStatsFitter::ORDER& eOrder ) {
     249             : 
     250             :   // Return the string corresponding to the CalStatsFitter::ORDER enum
     251             : 
     252           0 :   String orderName;
     253             : 
     254           0 :   switch ((uInt) eOrder) {
     255           0 :     case (uInt) CalStatsFitter::AVERAGE:
     256           0 :       orderName = String( "AVERAGE" );
     257           0 :       break;
     258           0 :     case (uInt) CalStatsFitter::LINEAR:
     259           0 :       orderName = String( "LINEAR" );
     260           0 :       break;
     261           0 :     case (uInt) CalStatsFitter::QUADRATIC:
     262           0 :       orderName = String( "QUADRATIC" );
     263           0 :       break;
     264           0 :     default:
     265           0 :       throw( AipsError( "Invalid order" ) );
     266             :       break;
     267             :   }
     268             : 
     269           0 :   return orderName;
     270             : 
     271             : }
     272             : 
     273             : // -----------------------------------------------------------------------------
     274             : 
     275             : /*
     276             : 
     277             : CalStats::typeName
     278             : 
     279             : Description:
     280             : ------------
     281             : This function returns the string corresponding to the CalStatsFitter::TYPE enum.
     282             : 
     283             : Inputs:
     284             : -------
     285             : eType - This reference to the CalStatsFitter::TYPE enum.
     286             : 
     287             : Outputs:
     288             : --------
     289             : The type string, returned via the function value.
     290             : 
     291             : Modification history:
     292             : ---------------------
     293             : 2012 Mar 06 - Nick Elias, NRAO
     294             :               Initial version.
     295             : 
     296             : */
     297             : 
     298             : // -----------------------------------------------------------------------------
     299             : 
     300           0 : String CalStatsFitter::typeName( const CalStatsFitter::TYPE& eType ) {
     301             : 
     302             :   // Return the string corresponding to the CalStatsFitter::TYPE enum
     303             : 
     304           0 :   String typeName;
     305             : 
     306           0 :   switch ((uInt) eType) {
     307           0 :     case (uInt) CalStatsFitter::LSQ:
     308           0 :       typeName = String( "LSQ" );
     309           0 :       break;
     310           0 :     case (uInt) CalStatsFitter::ROBUST:
     311           0 :       typeName = String( "ROBUST" );
     312           0 :       break;
     313           0 :     default:
     314           0 :       throw( AipsError( "Invalid type" ) );
     315             :       break;
     316             :   }
     317             : 
     318           0 :   return typeName;
     319             : 
     320             : }
     321             : 
     322             : // -----------------------------------------------------------------------------
     323             : 
     324             : /*
     325             : 
     326             : CalStats::weightName
     327             : 
     328             : Description:
     329             : ------------
     330             : This function returns the string corresponding to the CalStatsFitter::WEIGHT
     331             : enum.
     332             : 
     333             : Inputs:
     334             : -------
     335             : eWeight - This reference to the CalStatsFitter::WEIGHT enum.
     336             : 
     337             : Outputs:
     338             : --------
     339             : The weight string, returned via the function value.
     340             : 
     341             : Modification history:
     342             : ---------------------
     343             : 2012 Mar 06 - Nick Elias, NRAO
     344             :               Initial version.
     345             : 
     346             : */
     347             : 
     348             : // -----------------------------------------------------------------------------
     349             : 
     350           0 : String CalStatsFitter::weightName( const CalStatsFitter::WEIGHT& eWeight ) {
     351             : 
     352             :   // Return the string corresponding to the CalStatsFitter::WEIGHT enum
     353             : 
     354           0 :   String weightName;
     355             : 
     356           0 :   switch ((uInt) eWeight) {
     357           0 :     case (uInt) CalStatsFitter::NO:
     358           0 :       weightName = String( "NO" );
     359           0 :       break;
     360           0 :     case (uInt) CalStatsFitter::YES:
     361           0 :       weightName = String( "YES" );
     362           0 :       break;
     363           0 :     default:
     364           0 :       throw( AipsError( "Invalid weight" ) );
     365             :       break;
     366             :   }
     367             : 
     368           0 :   return weightName;
     369             : 
     370             : }
     371             : 
     372             : // -----------------------------------------------------------------------------
     373             : // End of CalStatsFitter public static member functions
     374             : // -----------------------------------------------------------------------------
     375             : 
     376             : // -----------------------------------------------------------------------------
     377             : // Start of CalStatsFitter private static member functions
     378             : // -----------------------------------------------------------------------------
     379             : 
     380             : /*
     381             : 
     382             : CalStatsFitter::lsqFit
     383             : 
     384             : Description:
     385             : ------------
     386             : This member function calculates polynomial least-squares fits.
     387             : 
     388             : NB: The linear (coefficients times basis functions) SVD fit is performed by
     389             : class LinearFitSVD in LinearFitSVD.h.  This class also requires the Polynomial
     390             : class in Polynomial.h and the AutoDiff class in AutoDiff.h.
     391             : 
     392             : Scaling algorithm:
     393             : ------------------
     394             : * The abscissae are scaled by the sum of the magnitude of their minimum value
     395             :   and the magnitude of their maximum value.
     396             : * The values are scaled by the sum of the magnitude of their minimum value and
     397             :   the magnitude of their maximum value.  The same scale factor is used to scale
     398             :   the value errors.
     399             : * After the fit, the parameters and covariances are rescaled back.
     400             : * NB: I could have used a scaling where the abscissae and values are scaled and
     401             :   shifted between 0 and 1, but reconsituting the fit parameters and covariances
     402             :   with this scheme is more difficult.  The present scheme minimizes round off
     403             :   and reconstituting the fit parameters and covariances is easier, so it will
     404             :   do.
     405             : 
     406             : Inputs:
     407             : -------
     408             : oAbs      - This reference to a Vector<Double> instance contains the abscissae.
     409             : oValue    - This reference to a Vector<Double> instance contains the values.
     410             : oValueErr - This reference to a Vector<Double> instance contains the value
     411             :             errors.
     412             : oFlag     - This reference to a Vector<Bool> instance contains the flags.
     413             : eOrder    - This reference to a CalStatsFitter::ORDER enum determines the fit
     414             :             order (CalStatsFitter::AVERAGE = average fit,
     415             :             CalStatsFitter::LINEAR = linear fit,
     416             :             CalStatsFitter::QUADRATIC = quadratic fit).
     417             : eWeight   - This reference to a CalStatsFitter::WEIGHT enum is the weight flag
     418             :             (CalStatsFitter::YES = apply weights, CalStatsFitter::NO = don't
     419             :             apply weights).
     420             : 
     421             : Outputs:
     422             : --------
     423             : oFlag - This reference to a Vector<Bool> instance contains the flags.
     424             : The reference to the FIT structure, returned via the function value.  If an
     425             : error occurrs the FIT structure will contain only the initial values and no
     426             : error message will be printed.
     427             : 
     428             : Modification history:
     429             : ---------------------
     430             : 2011 Dec 08 - Nick Elias, NRAO
     431             :               Initial version.
     432             : 2011 Dec 21 - Nick Elias, NRAO
     433             :               Abscissa and value scaling performed before fitting to minimize
     434             :               round-off errors.
     435             : 2012 Jan 23 - Nick Elias, NRAO
     436             :               Fixed bug for weighting (the CASA tool documentation is confusing
     437             :               with respect to how to input errors and weights).
     438             : 2012 Jan 25 - Nick Elias, NRAO
     439             :               Error checking added.
     440             : 2012 Mar 15 - Nick Elias, NRAO
     441             :               Added calculates for residual variance and mean.
     442             : 
     443             : */
     444             : 
     445             : // -----------------------------------------------------------------------------
     446             : 
     447           0 : CalStatsFitter::FIT CalStatsFitter::lsqFit( const Vector<Double>& oAbs,
     448             :     const Vector<Double>& oValue, const Vector<Double>& oValueErr,
     449             :     Vector<Bool>& oFlag, const ORDER& eOrder, const WEIGHT& eWeight ) {
     450             : 
     451             :   // Get the length of the input arrays
     452             : 
     453           0 :   uInt uiNumData = oAbs.nelements();
     454             : 
     455             : 
     456             :   // Eliminate the flagged abscissae, value, and value errors
     457             : 
     458           0 :   MaskedArray<Double> oAbsM( oAbs, !oFlag );
     459           0 :   Vector<Double> oAbsC( oAbsM.getCompressedArray() );
     460             : 
     461           0 :   MaskedArray<Double> oValueM( oValue, !oFlag );
     462           0 :   Vector<Double> oValueC( oValueM.getCompressedArray() );
     463             : 
     464           0 :   MaskedArray<Double> oValueErrM( oValueErr, !oFlag );
     465           0 :   Vector<Double> oValueErrC( oValueErrM.getCompressedArray() );
     466           0 :   if ( !(Bool) eWeight ) oValueErrC = (Double) 1.0;
     467             : 
     468             : 
     469             :   // Check to see if there are a sufficient number of data.  The absolute
     470             :   // minimum number of data is allowed, which may or may not be a good idea
     471             :   // (TBD).
     472             : 
     473           0 :   uInt uiNumDataC = oAbsC.nelements();
     474           0 :   Int iDoF = ((Int) uiNumDataC) - ((Int) eOrder);
     475             : 
     476           0 :   if ( iDoF <= 0 ) {
     477           0 :     throw( AipsError( "Insufficient number of data for least-squares fit" ) );
     478             :   }
     479             : 
     480             : 
     481             :   // Set the scaling (to eliminate round off) and weighting
     482             : 
     483           0 :   Double dScaleX = abs( max(oAbsC) ) + abs( min(oAbsC) );
     484           0 :   oAbsC /= dScaleX;
     485             : 
     486           0 :   Double dScaleY = abs( max(oValueC) ) + abs( min(oValueC) );
     487           0 :   oValueC /= dScaleY;
     488           0 :   oValueErrC /= dScaleY;
     489             : 
     490             : 
     491             :   // Initialize the SVD linear fit object
     492             : 
     493           0 :   LinearFitSVD<Double> oFitter;
     494             : 
     495           0 :   oFitter.asSVD( true );
     496             : 
     497             : 
     498             :   // Initialize the basis functions and feed them to the SVD linear fit object
     499             : 
     500           0 :   Polynomial< AutoDiff<Double> > oBasisFuncs( (uInt) eOrder );
     501           0 :   for ( uInt o=0; o<=(uInt)eOrder; o++ ) oBasisFuncs[o] = 1.0;
     502             : 
     503           0 :   oFitter.setFunction( oBasisFuncs );
     504             : 
     505             : 
     506             :   // Calculate the fit 
     507             : 
     508           0 :   Vector<Double> oPars( (uInt) eOrder+1 );
     509             : 
     510           0 :   Bool bValid = oFitter.fit( oPars, oAbsC, oValueC, oValueErrC );
     511             : 
     512             : 
     513             :   // Initialize the CalStatsFitter::FIT structure
     514             : 
     515           0 :   CalStatsFitter::FIT fit;
     516             : 
     517             : 
     518             :   // Populate the FIT structure, including abscissa, parameter,
     519             :   // and covariance rescaling
     520             : 
     521           0 :   if ( bValid ) {
     522             : 
     523           0 :     fit.bValid = bValid;
     524             : 
     525           0 :     fit.oPars = Vector<Double>( oPars );
     526           0 :     for ( uInt o=0; o<=(uInt)eOrder; o++ ) {
     527           0 :       Double dScale = pow(dScaleX,(Int)o) / dScaleY;
     528           0 :       fit.oPars[o] /= dScale;
     529             :     }
     530             : 
     531           0 :     fit.oModel = Vector<Double>( uiNumData, (Double) 0.0 );
     532           0 :     for ( uInt o=0; o<=(uInt)eOrder; o++ ) {
     533           0 :       fit.oModel += fit.oPars[o] * pow(oAbs,(Double)o);
     534             :     }
     535             : 
     536           0 :     fit.oRes = Vector<Double>( oValue - fit.oModel );
     537             : 
     538           0 :     fit.dResMean = mean<Double>( fit.oRes );
     539           0 :     fit.dResVar = variance<Double>( fit.oRes, fit.dResMean );
     540             : 
     541           0 :     Double dMetric = oFitter.chiSquare() / ((Double) iDoF);
     542             : 
     543           0 :     fit.oCovars = Matrix<Double>( oFitter.compuCovariance() );
     544           0 :     for ( uInt o1=0; o1<=(uInt)eOrder; o1++ ) {
     545           0 :       for ( uInt o2=0; o2<=(uInt)eOrder; o2++ ) {
     546           0 :         Double dScale = pow(dScaleX,(Int)o1) * pow(dScaleX,(Int)o2);
     547           0 :         dScale /= pow(dScaleY,2);
     548           0 :         fit.oCovars(o1,o2) /= dScale;
     549             :       }
     550             :     }
     551             : 
     552           0 :     if ( (Bool) eWeight ) {
     553           0 :       fit.dRedChi2 = dMetric;
     554             :     } else {
     555           0 :       fit.oCovars *= dMetric;
     556           0 :       fit.dRedChi2 = 1.0;
     557             :     }
     558             : 
     559             :   } else {
     560             : 
     561           0 :     throw( AipsError( "Least-squares fit failed" ) );
     562             : 
     563             :   }
     564             : 
     565             : 
     566             :   // Return the FIT structure
     567             : 
     568           0 :   return fit;
     569             : 
     570             : }
     571             : 
     572             : // -----------------------------------------------------------------------------
     573             : 
     574             : /*
     575             : 
     576             : CalStatsFitter::robustFit
     577             : 
     578             : Description:
     579             : ------------
     580             : This member function calculates polynomial robust fits.
     581             : 
     582             : NB: Unlike member function lsqFit(), this member function does not calculate
     583             : quadratic fits.
     584             : 
     585             : NB: All outliers will be trimmed.  This trimming will manifest itself in the
     586             : input/output abscissae, value, and value errors.
     587             : 
     588             : Algorithm:
     589             : ----------
     590             : * Calculate the initial slope and slope error estimate using Theil's method (see
     591             :   thiel() member function).
     592             : * Using the initial estimate of the fit parameters (and new abscissae and value
     593             :   vectors if weighting is selected), calculate the robust fit parameters by
     594             :   minimizing the absolute deviation.  No weighting is ever used here.
     595             :   - If the order is zero, the median is calculated (in ArrayMath.h).  Forming
     596             :     the median is essentially a sorting problem.
     597             :   - If the order is one, the slope and intercept are calculated.  The algorithm
     598             :     may be found in "Numerical Recipes in C" (in the first edition, section 14.6
     599             :     on pages 562-563).  Forming the slope and intercept is essentially a root
     600             :     finding problem performed by the slope() member function.  The median (in
     601             :     ArrayMath.h) is used as well.  Some input parameters of the slope() member
     602             :     function are set by this member function and do not appear in its input
     603             :     parameter list.
     604             :       # The search range for the robust slope 10.0 times the standard deviation
     605             :         of the initial least-squares fit.
     606             :       # The number of test slopes within an iteration is set to 20.
     607             :       # The number of iterations is set to 30.
     608             : * The robust model and residuals are calculated.
     609             : * A new flag vector is formed.  false elements correspond to absolute residuals
     610             :   less than fTrim (an input parameter of this member function) times the mean
     611             :   absolute deviation (avdev() function in ArrayMath.h) of the residuals.  true
     612             :   elements, of course, correspond to the opposite case.
     613             : * Calculate a "trimmed" least-squares fit using the original absicssae, value,
     614             :   and value errors (but with the new flag vector) to get the final estimate of
     615             :   the fit parameters and their covariance matrix.
     616             : 
     617             : Inputs:
     618             : -------
     619             : oAbs      - This reference to a Vector<Double> instance contains the abscissae.
     620             : oValue    - This reference to a Vector<Double> instance contains the values.
     621             : oValueErr - This reference to a Vector<Double> instance contains the value
     622             :             errors.
     623             : oFlag     - This reference to a Vector<Bool> instance contains the flags.
     624             : eOrder    - This reference to a CalStatsFitter::ORDER enum contains the fit
     625             :             order (CalStatsFitter::AVERAGE = average fit, CalStatsFitter::LINEAR
     626             :             = linear fit).
     627             : eWeight   - This reference to a CalStatsFitter::WEIGHT enum contains the weight
     628             :             flag (CalStatsFitter::YES = apply weights, CalStatsFitter::NO =
     629             :             don't apply weights).
     630             : dTrim     - This reference to a Double variable contains the dimensionless trim
     631             :             factor.
     632             : 
     633             : Outputs:
     634             : --------
     635             : oFlag - This reference to a Vector<Bool> instance contains the flags.
     636             : The reference to the FIT structure containing the trimmed least-squares fit,
     637             : returned via the function value.  If an error occurrs the FIT structure will
     638             : contain only the initial values and no error message will be printed.
     639             : 
     640             : Modification history:
     641             : ---------------------
     642             : 2011 Dec 08 - Nick Elias, NRAO
     643             :               Initial version.
     644             : 2012 Jan 24 - Nick Elias, NRAO
     645             :               The robust fit used for the initial estimate of the parameters is
     646             :               no longer weighted.  The weighting is used only for the final
     647             :               "trimmed" least-squares fit.
     648             : 2012 Jan 25 - Nick Elias, NRAO
     649             :               Error checking added.
     650             : 
     651             : */
     652             : 
     653             : // -----------------------------------------------------------------------------
     654             : 
     655           0 : CalStatsFitter::FIT CalStatsFitter::robustFit( const Vector<Double>& oAbs,
     656             :     const Vector<Double>& oValue, const Vector<Double>& oValueErr,
     657             :     Vector<Bool>& oFlag, const ORDER& eOrder, const WEIGHT& eWeight,
     658             :     const Double& dTrim ) {
     659             : 
     660             :   // Eliminate the flagged abscissae, value, and value errors
     661             : 
     662           0 :   MaskedArray<Double> oAbsM( oAbs, !oFlag );
     663           0 :   Vector<Double> oAbsC( oAbsM.getCompressedArray() );
     664             : 
     665           0 :   MaskedArray<Double> oValueM( oValue, !oFlag );
     666           0 :   Vector<Double> oValueC( oValueM.getCompressedArray() );
     667             : 
     668           0 :   MaskedArray<Double> oValueErrM( oValueErr, !oFlag );
     669           0 :   Vector<Double> oDataErrC( oValueErrM.getCompressedArray() );
     670             : 
     671             : 
     672             :   // Minimize the mean absolute deviations to calculate the robust fit
     673             :   // parameters
     674             : 
     675             :   Double dSlope, dMedian;
     676             : 
     677           0 :   switch ((uInt) eOrder) {
     678             : 
     679           0 :     case (uInt) AVERAGE:
     680           0 :       dSlope = 0.0;
     681             :       try {
     682           0 :         dMedian = median( oValueC );
     683             :       }
     684           0 :       catch ( AipsError oAE ) {
     685           0 :         throw( oAE );
     686             :       }
     687           0 :       break;
     688             : 
     689           0 :     case (uInt) LINEAR:
     690             :       try {
     691             :         Double dSlopeT, dSlopeTErr;
     692           0 :         theil( oAbsC, oValueC, dSlopeT, dSlopeTErr );
     693           0 :         dSlope = slope( oAbsC, oValueC, dSlopeT, dSlopeTErr, 10.0, 20, 30 );
     694           0 :         dMedian = median( oValueC - dSlope*oAbsC );
     695             :       }
     696           0 :       catch( AipsError oAE ) {
     697           0 :         throw( oAE );
     698             :       }
     699           0 :       break;
     700             : 
     701           0 :     default:
     702           0 :       throw( AipsError( "Invalid type of robust fit" ) );
     703             :       break;
     704             : 
     705             :   }
     706             : 
     707             : 
     708             :   // Trim the data to make them more robust.  See the ICD of this member
     709             :   // function for more details.
     710             : 
     711           0 :   Vector<Double> oModel = Vector<Double>( dSlope*oAbs + dMedian );
     712           0 :   Vector<Double> oRes = Vector<Double>( oValue - oModel );
     713             : 
     714           0 :   Vector<Bool> oFlagTrim;
     715           0 :   if ( !(Bool) eWeight ) {
     716           0 :     oFlagTrim = fabs(oRes) >= dTrim*avdev(oRes);
     717             :   } else {
     718           0 :     oFlagTrim = fabs(oRes/oValueErr) >= dTrim*avdev(oRes/oValueErr);
     719             :   }
     720             : 
     721           0 :   oFlag = oFlag || oFlagTrim;
     722             : 
     723             : 
     724             :   // Calculate the "trimmed" least-squares fit 
     725             : 
     726           0 :   CalStatsFitter::FIT fitTrim;
     727             : 
     728             :   try {
     729           0 :     fitTrim = CalStatsFitter::FIT( lsqFit( oAbs, oValue, oValueErr, oFlag, eOrder,
     730           0 :                                            eWeight ) );
     731             :   }
     732           0 :   catch ( AipsError oAE ) {
     733           0 :     throw( oAE );
     734             :   }
     735             : 
     736             : 
     737             :   // Return the FIT structure (trimmed least-squares fit)
     738             : 
     739           0 :   return fitTrim;
     740             : 
     741             : }
     742             : 
     743             : // -----------------------------------------------------------------------------
     744             : 
     745             : /*
     746             : 
     747             : CalStatsFitter::slope
     748             : 
     749             : Description:
     750             : ------------
     751             : This member function calculates the robust slope.
     752             : 
     753             : NB: For the stopping criterion to work reliably, the number of slopes input
     754             : parameter should be set to at least ~ 10.
     755             : 
     756             : Algorithm:
     757             : ----------
     758             : * Set the initial minimum and maximum slope search range based on the estimated
     759             :   slope and its error times the dimensionless fudge factor.
     760             :   - Example: slope = 5, slope error = 1, fudge factor = 2 --> initial slope
     761             :     search range is 3 to 7.
     762             : * Outer iteration loop:
     763             :   - Divide up the slope range into "subslopes" according to the number of slopes
     764             :     input parameter (2 = bisection, but a value greater than ~ 10 should be used
     765             :     for the stopping criterion to work reliably).
     766             :   - Calculate the bracketing function (brackFunc() member function) for each
     767             :     subslope.
     768             :   - Inner subslope loop:
     769             :     # Look for a sign change in the bracketing function between the minimum
     770             :       subslope of the iteration and the present subslope (scalar signum()
     771             :       member function).
     772             :     # If there is no sign change, go to the next subslope.
     773             :     # If there is a sign change, reset the maximum slope search range to the
     774             :       present subslope, reset the minimum slope search range to the previous
     775             :       subslope, and break out of the subslope loop.
     776             :   - If this is the first iteration, check if the slope has been bracketed.  If
     777             :     not, throw an exception.
     778             :   - Check for convergence.  I only do this when more than half of the iterations
     779             :     have been completed because I want to insure that the average slope is a
     780             :     reasonable value.  This strategy is not strictly optimum, since more
     781             :     iterations will always be calculated than necessary.  Given the reliability
     782             :     and the nominal sizes of vectors containing calibration, I don't expect it
     783             :     to be an issue.
     784             : 
     785             : Inputs:
     786             : -------
     787             : oAbs       - This reference to a Vector<Double> instance contains the abscissae.
     788             : oValue     - This reference to a Vector<Double> instance contains the values.
     789             : dSlope     - This reference to a Double variable contains the initial slope
     790             :              estimate.
     791             : dSlopeErr  - This reference to a Double variable contains the initial slope
     792             :              error estimate.
     793             : dFudge     - This reference to a Double variable contains the dimensionless
     794             :              fudge factor.
     795             : uiNumSlope - This reference to a uInt variable contains the number of subslopes
     796             :              per iteration.
     797             : uiNumIter  - This reference to a uInt variable contains the number of
     798             :              iterations.
     799             : 
     800             : Outputs:
     801             : --------
     802             : The reference to the Double variable that contains the robust slope, returned
     803             : via the function value.
     804             : 
     805             : Modification history:
     806             : ---------------------
     807             : 2011 Dec 08 - Nick Elias, NRAO
     808             :               Initial version.
     809             : 2012 Jan 25 - Nick Elias, NRAO
     810             :               Error checking added.
     811             : 
     812             : */
     813             : 
     814             : // -----------------------------------------------------------------------------
     815             : 
     816           0 : Double& CalStatsFitter::slope( const Vector<Double>& oAbs,
     817             :     const Vector<Double>& oValue, const Double& dSlope, const Double& dSlopeErr,
     818             :     const Double& dFudge, const uInt& uiNumSlope, const uInt& uiNumIter ) {
     819             : 
     820             :   // Initialize the slope range
     821             : 
     822           0 :   Double dSlopeMin = dSlope - dFudge*dSlopeErr;
     823           0 :   Double dSlopeMax = dSlope + dFudge*dSlopeErr;
     824             : 
     825             : 
     826             :   // Perform the bisections iteratively to refine the robust slope range bracket
     827             : 
     828           0 :   for ( uInt i=0; i<uiNumIter; i++ ) {
     829             : 
     830           0 :     Bool bFlag = false;
     831             : 
     832           0 :     Double dSlopeInt = (dSlopeMax-dSlopeMin) / ((Double) uiNumSlope);
     833             : 
     834           0 :     Vector<Double> oIndgen( uiNumSlope+1 ); indgen( oIndgen );
     835           0 :     Vector<Double> oSlopes( oIndgen*dSlopeInt + dSlopeMin );
     836             : 
     837           0 :     Double dValueMin = brackFunc( oAbs, oValue, oSlopes[0] );
     838             : 
     839           0 :     for ( uInt s=1; s<=uiNumSlope; s++ ) {
     840           0 :       Double dValue = brackFunc( oAbs, oValue, oSlopes[s] );
     841           0 :       if ( dValue == 0.0 ) return( oSlopes[s] );
     842           0 :       if ( signum( dValue ) != signum( dValueMin ) ) {
     843           0 :         bFlag = true;
     844           0 :         dSlopeMin = oSlopes[s] - dSlopeInt;
     845           0 :         dSlopeMax = oSlopes[s];
     846           0 :         break;
     847             :       }
     848             :     }
     849             : 
     850           0 :     if ( !bFlag && i==0 ) {
     851           0 :       throw( AipsError( "Robust slope estimate has not been bracketed" ) );
     852             :     }
     853             : 
     854             :   }
     855             : 
     856             : 
     857             :   // Calculate the robust slope estimate (average of the last range bracket) and
     858             :   // return the reference to it
     859             : 
     860           0 :   Double* pdSlopeEst = new Double( 0.5 * ( dSlopeMin + dSlopeMax ) );
     861             : 
     862           0 :   return( *pdSlopeEst );
     863             : 
     864             : }
     865             : 
     866             : // -----------------------------------------------------------------------------
     867             : 
     868             : /*
     869             : 
     870             : CalStatsFitter::brackFunc
     871             : 
     872             : Description:
     873             : ------------
     874             : This member function is root-finding bracketing function used to determine the
     875             : slope.
     876             : 
     877             : NB: The algorithm may be found in "Numerical Recipes in C" (in the first
     878             : edition, section 14.6 on pages 562-563).
     879             : 
     880             : Inputs:
     881             : -------
     882             : oAbs   - This reference to a Vector<Double> instance contains the abscissae.
     883             : oValue - This reference to a Vector<Double> instance contains the values.
     884             : dSlope - This reference to a Double variable contains the slope estimate.
     885             : 
     886             : Outputs:
     887             : --------
     888             : The reference to the Double variable containing the bracketing function value,
     889             : returned via the function value.
     890             : 
     891             : Modification history:
     892             : ---------------------
     893             : 2011 Dec 08 - Nick Elias, NRAO
     894             :               Initial version.
     895             : 
     896             : */
     897             : 
     898             : // -----------------------------------------------------------------------------
     899             : 
     900           0 : Double& CalStatsFitter::brackFunc( const Vector<Double>& oAbs,
     901             :     const Vector<Double>& oValue, const Double& dSlope ) {
     902             : 
     903             :   // Calculate the median (from Arraymath.h), which corresponds to the y offset
     904             : 
     905           0 :   Double dOffset = median( oValue - dSlope*oAbs );
     906             : 
     907             : 
     908             :   // Calculate the bracketing function value and return the reference to it
     909             : 
     910           0 :   Double* pdBrackFunc = new Double( 0.0 );
     911           0 :   *pdBrackFunc = sum( oAbs * signum( oValue - dSlope*oAbs - dOffset ) );
     912             : 
     913           0 :   return( *pdBrackFunc );
     914             : 
     915             : }
     916             : 
     917             : // -----------------------------------------------------------------------------
     918             : 
     919             : /*
     920             : 
     921             : CalStatsFitter::signum (scalar)
     922             : 
     923             : Description:
     924             : ------------
     925             : This member function calculates the signum function.
     926             : 
     927             : Inputs:
     928             : -------
     929             : dValue - This reference to a Double variable contains the input value.
     930             : 
     931             : Outputs:
     932             : --------
     933             : The reference to the Double variable containing the signum value, returned via
     934             : the function value.
     935             : 
     936             : Modification history:
     937             : ---------------------
     938             : 2011 Dec 08 - Nick Elias, NRAO
     939             :               Initial version.
     940             : 
     941             : */
     942             : 
     943             : // -----------------------------------------------------------------------------
     944             : 
     945           0 : Double& CalStatsFitter::signum( const Double& dValue ) {
     946             : 
     947             :   // Calculate the signum value
     948             : 
     949           0 :   Double* pdSignum = new Double( 0.0 );
     950             : 
     951           0 :   if ( dValue > 0.0 ) {
     952           0 :     *pdSignum = 1.0;
     953           0 :   } else if ( dValue < 0.0 ) {
     954           0 :     *pdSignum = -1.0;
     955             :   }
     956             : 
     957             : 
     958             :   // Return the reference to the signum value
     959             : 
     960           0 :   return( *pdSignum );
     961             : 
     962             : }
     963             : 
     964             : // -----------------------------------------------------------------------------
     965             : 
     966             : /*
     967             : 
     968             : CalStatsFitter::signum (vector)
     969             : 
     970             : Description:
     971             : ------------
     972             : This member function calculates the signum function.
     973             : 
     974             : Inputs:
     975             : -------
     976             : oValue - This reference to a Vector<Double> instance contains the input vector
     977             :          values.
     978             : 
     979             : Outputs:
     980             : --------
     981             : The reference to the Vector<Double>& object containing the signum values,
     982             : returned via the function value.
     983             : 
     984             : Modification history:
     985             : ---------------------
     986             : 2011 Dec 08 - Nick Elias, NRAO
     987             :               Initial version.
     988             : 
     989             : */
     990             : 
     991             : // -----------------------------------------------------------------------------
     992             : 
     993           0 : Vector<Double>& CalStatsFitter::signum( const Vector<Double>& oValue ) {
     994             : 
     995             :   // Calculate the signum values for all of the input vector values
     996             : 
     997           0 :   uInt uiNumValue = oValue.nelements();
     998           0 :   Vector<Double>* poSignum = new Vector<Double>( uiNumValue );
     999             : 
    1000           0 :   for ( uInt v=0; v<uiNumValue; v++ ) {
    1001           0 :     poSignum->operator[](v) = signum( oValue[v] );
    1002             :   }
    1003             : 
    1004             : 
    1005             :   // Return the reference to the vector that contains the signum values
    1006             : 
    1007           0 :   return( *poSignum );
    1008             : 
    1009             : }
    1010             : 
    1011             : // -----------------------------------------------------------------------------
    1012             : 
    1013             : /*
    1014             : 
    1015             : CalStatsFitter::theil
    1016             : 
    1017             : Description:
    1018             : ------------
    1019             : This member function estimates the slope and slope error using Theil's method.
    1020             : 
    1021             : Algorithm:
    1022             : ----------
    1023             : * Calculate the slope for each unique pair of points.
    1024             : * The slope estimate is the median of all calculated slopes.
    1025             : * The slope error estimate is the absolute deviation of all calculated slopes.
    1026             : 
    1027             : Inputs:
    1028             : -------
    1029             : oAbs   - This reference to a Vector<Double> instance contains the abscissae.
    1030             : oValue - This reference to a Vector<Double> instance contains the values.
    1031             : 
    1032             : Outputs:
    1033             : --------
    1034             : dSlope    - This reference to a Double variable contains the slope estimate.
    1035             : dSlopeErr - This reference to a Double variable contains the slope error
    1036             :             estimate.
    1037             : 
    1038             : Modification history:
    1039             : ---------------------
    1040             : 2012 Jan 24 - Nick Elias, NRAO
    1041             :               Initial version.
    1042             : 
    1043             : */
    1044             : 
    1045             : // -----------------------------------------------------------------------------
    1046             : 
    1047           0 : void CalStatsFitter::theil( const Vector<Double>& oAbs,
    1048             :     const Vector<Double>& oValue, Double& dSlope, Double& dSlopeErr ) {
    1049             : 
    1050             :   // Calculate the slope and slope error estimate using Theil's method
    1051             : 
    1052           0 :   Vector<Double> oSlope;
    1053             : 
    1054           0 :   for ( uInt e1=0,s=0; e1<oAbs.nelements(); e1++ ) {
    1055           0 :     for ( uInt e2=e1+1; e2<oAbs.nelements(); e2++ ) {
    1056           0 :       if ( oValue[e2] == oValue[e1] && oAbs[e2] == oAbs[e1] ) continue;
    1057           0 :       oSlope.resize( ++s, true );
    1058           0 :       oSlope[s-1] = (oValue[e2]-oValue[e1]) / (oAbs[e2]-oAbs[e1]);
    1059             :     }
    1060             :   }
    1061             : 
    1062           0 :   dSlope = median( oSlope );
    1063           0 :   dSlopeErr = avdev( oSlope );
    1064             : 
    1065             : 
    1066             :   // Return
    1067             : 
    1068           0 :   return;
    1069             : 
    1070             : }
    1071             : 
    1072             : // -----------------------------------------------------------------------------
    1073             : // End of CalStatsFitter private static member functions
    1074             : // -----------------------------------------------------------------------------
    1075             : 
    1076             : // -----------------------------------------------------------------------------
    1077             : // End of CalStatsFitter class
    1078             : // -----------------------------------------------------------------------------
    1079             : 
    1080             : };
    1081             : 
    1082             : // -----------------------------------------------------------------------------
    1083             : // End of casa namespace
    1084             : // -----------------------------------------------------------------------------

Generated by: LCOV version 1.16