Line data Source code
1 : //# FluxCalcLogFreqPolynomial.cc: Implementation of FluxCalcLogFreqPolynomial.h 2 : //# Copyright (C) 2010 3 : //# Associated Universities, Inc. Washington DC, USA. 4 : //# 5 : //# This library is free software; you can redistribute it and/or modify it 6 : //# under the terms of the GNU Library General Public License as published by 7 : //# the Free Software Foundation; either version 2 of the License, or (at your 8 : //# option) any later version. 9 : //# 10 : //# This library is distributed in the hope that it will be useful, but WITHOUT 11 : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 : //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 13 : //# License for more details. 14 : //# 15 : //# You should have received a copy of the GNU Library General Public License 16 : //# along with this library; if not, write to the Free Software Foundation, 17 : //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 18 : //# 19 : //# Correspondence concerning AIPS++ should be addressed as follows: 20 : //# Internet email: aips2-request@nrao.edu. 21 : //# Postal address: AIPS++ Project Office 22 : //# National Radio Astronomy Observatory 23 : //# 520 Edgemont Road 24 : //# Charlottesville, VA 22903-2475 USA 25 : //# 26 : #include <components/ComponentModels/FluxCalcLogFreqPolynomial.h> 27 : #include <casacore/casa/BasicSL/String.h> 28 : #include <casacore/measures/Measures/MFrequency.h> 29 : 30 : // Handy for passing anonymous arrays to functions. 31 : #include <casacore/scimath/Mathematics/RigidVector.h> 32 : 33 : #include <map> 34 : 35 : #include <casacore/casa/Logging/LogIO.h> 36 : 37 : using namespace casacore; 38 : namespace casa { //# NAMESPACE CASA - BEGIN 39 : 40 0 : Bool FluxCalcLogFreqPolynomial::operator()(Flux<Double>& value, 41 : Flux<Double>& error, 42 : const MFrequency& mfreq, 43 : const Bool updatecoeffs) 44 : { 45 0 : LogIO os(LogOrigin("FluxCalcLogFreqPolynomial", "()", WHERE)); 46 0 : Double dt = log10(mfreq.get(freqUnit_p).getValue()); 47 0 : if (updatecoeffs || coeffs_p(0).nelements()==0) { 48 0 : coeffs_p(0).resize(); 49 0 : coeffs_p(1).resize(); 50 0 : coeffs_p=getCurrentCoeffs(); 51 : } 52 : { 53 0 : validfrange_p=getValidFreqRange(); 54 0 : Double ghzinfreq = mfreq.get("GHz").getValue(); 55 0 : Double minfreq = validfrange_p(0).get("GHz").getValue(); 56 0 : Double maxfreq = validfrange_p(1).get("GHz").getValue(); 57 0 : if (!(minfreq==0.0 && maxfreq ==0.0)) { 58 : //cerr<<" range:"<<minfreq<<","<<maxfreq<<" infreq="<<ghzinfreq<<endl; 59 0 : if (minfreq > ghzinfreq || maxfreq < ghzinfreq) { 60 : //cerr<<"Input "<<String::toString(mfreq)<<" is out of the valid frequency range of the flux model: "<<String::toString(validfrange_p)<<endl; 61 0 : os<<LogIO::WARN<<"Input "<<String::toString(mfreq) 62 : <<" (Hz) is out of the valid frequency range of the flux model: " 63 0 : <<String::toString(validfrange_p)<<" (Hz)"<<LogIO::POST; 64 : } 65 : } 66 : } 67 0 : Double fluxCoeff = coeffs_p(0)[coeffs_p(0).nelements() - 1]; 68 0 : for(Int order = coeffs_p(0).nelements() - 2; order >= 0; --order) 69 0 : fluxCoeff = fluxCoeff * dt + coeffs_p(0)[order]; 70 : 71 0 : Double coeffErr = 0.0; 72 0 : Double dtpow = 1.0; 73 0 : for(uInt order = 0; order < coeffs_p(1).nelements(); ++order){ 74 0 : coeffErr += square(coeffs_p(1)[order] * dtpow); 75 0 : dtpow *= dt; 76 : } 77 : 78 0 : Double fluxDensity = pow(10.0, fluxCoeff); 79 0 : Double fluxError = coeffErr > 0.0 ? C::ln10 * fluxDensity * sqrt(coeffErr) : 0.0; 80 : 81 : //cerr<<"FluxDensity=="<<fluxDensity<<endl; 82 0 : value.setValue(fluxDensity); 83 0 : error.setValue(fluxError); 84 : 85 : // In this case the hard part of matching the std and src has already been done. 86 0 : return true; 87 : } 88 : 89 0 : Bool FluxCalcLogFreqPolynomial::setSource(const String& sourceName, const MDirection& sourceDir) 90 : { 91 0 : Bool success = FluxCalcVQS::setSource(sourceName, sourceDir); 92 : 93 0 : if(success) 94 0 : success = setSourceCoeffs(); 95 0 : return success; 96 : } 97 : 98 0 : void FluxCalcLogFreqPolynomial::setFreqUnit(const String& freqUnit) 99 : { 100 0 : freqUnit_p = freqUnit; 101 0 : } 102 : 103 0 : void FluxCalcLogFreqPolynomial::fill_coeffs(const Vector<Float>& lfv) 104 : { 105 0 : coeffs_p(0).resize(); 106 0 : coeffs_p(1).resize(); 107 0 : coeffs_p(0) = lfv; 108 0 : } 109 : 110 : 111 0 : FluxCalcLogFreqBrokenPolynomial::FluxCalcLogFreqBrokenPolynomial() : 112 : FluxCalcLogFreqPolynomial::FluxCalcLogFreqPolynomial(), 113 0 : break_freq_p(Quantity(0.0, "Hz")) 114 : { 115 0 : } 116 : 117 0 : Bool FluxCalcLogFreqBrokenPolynomial::operator()(Flux<Double>& value, 118 : Flux<Double>& error, 119 : const MFrequency& mfreq, 120 : const Bool updatecoeffs) 121 : { 122 : if (updatecoeffs) { 123 : //do nothing for now 124 : ; 125 : } 126 0 : Double break_freq_in_Hz = break_freq_p.get("Hz").getValue(); 127 : 128 0 : if(break_freq_in_Hz > 0.0){ 129 0 : if(mfreq.get("Hz").getValue() > break_freq_in_Hz){ 130 0 : if(in_low_state_p) 131 0 : fill_coeffs(high_coeffs_p); 132 : } 133 0 : else if(!in_low_state_p) 134 0 : fill_coeffs(low_coeffs_p); 135 : } 136 : 137 : // Proceed... 138 0 : return FluxCalcLogFreqPolynomial::operator()(value, error, mfreq); 139 : } 140 : 141 0 : Bool FluxCalcLogFreqPolynomialSH :: operator()( Flux<Double>& value, 142 : Flux<Double>& error, 143 : const MFrequency& mfreq, 144 : const Bool /* updatecoeffs */) 145 : { 146 0 : Double S = 0.; 147 0 : Double dS2 = 0.; 148 0 : coeffs_p(0).resize(); 149 0 : coeffs_p(1).resize(); 150 0 : coeffs_p=getCurrentCoeffs(); 151 0 : if ( coeffs_p( 0 ).nelements() > 0 ) { 152 0 : Double logF = log10( mfreq.get( freqUnit_p ).getValue() / 0.150 ); 153 0 : Double logS = 0.; 154 0 : for ( uInt order = coeffs_p( 0 ).nelements() - 1; order >= 1; --order) 155 0 : logS = ( logS + coeffs_p( 0 )[ order ] ) * logF; 156 0 : S = coeffs_p( 0 )[ 0 ] * pow( 10.0, logS ); 157 0 : if ( coeffs_p( 1 ).nelements() > 0 ) { 158 0 : for ( uInt order = coeffs_p( 1 ).nelements() - 1; order >= 1; --order) 159 0 : dS2 = ( dS2 + square( coeffs_p( 1 )[ order ] ) ) * square( logF ); 160 0 : dS2 = square( S * coeffs_p( 1 )[ 0 ] / coeffs_p( 0 )[ 0 ] ) + 161 0 : square( C::ln10 * S ) * dS2; 162 : } 163 : } 164 : 165 0 : Double dS = ( dS2 > 0.0 ) ? sqrt( dS2 ) : 0.0; 166 0 : value.setValue( S ); 167 0 : error.setValue( dS ); 168 : 169 0 : return true; 170 : } 171 0 : Bool FluxCalcLogFreqPolynomialSH::setSource(const String& sourceName, const MDirection& sourceDir) 172 : { 173 0 : Bool success = FluxCalcVQS::setSource(sourceName, sourceDir); 174 : 175 0 : if(success) 176 0 : success = setSourceCoeffs(); 177 0 : return success; 178 : } 179 : 180 0 : void FluxCalcLogFreqPolynomialSH::setFreqUnit(const String& freqUnit) 181 : { 182 0 : freqUnit_p = freqUnit; 183 0 : } 184 : } //# NAMESPACE CASA - END