LCOV - code coverage report
Current view: top level - synthesis/MeasurementEquations - SideBandSeparator.cc (source / functions) Hit Total Coverage
Test: ctest_coverage.info Lines: 0 495 0.0 %
Date: 2023-11-02 14:27:30 Functions: 0 26 0.0 %

          Line data    Source code
       1             : /*
       2             :  * SidebandSeparator.cc
       3             :  *
       4             :  *  Created on: 2017/07/19
       5             :  *      Author: kana
       6             :  */
       7             : 
       8             : // STL
       9             : #include <ctype.h>
      10             : 
      11             : // cascore
      12             : #include <casacore/casa/OS/File.h>
      13             : #include <casacore/casa/Logging/LogIO.h>
      14             : 
      15             : #include <imageanalysis/ImageAnalysis/ImageFactory.h>
      16             : #include <imageanalysis/ImageAnalysis/ImageMetaData.h>
      17             : #include <imageanalysis/ImageAnalysis/ImageMaskAttacher.h>
      18             : 
      19             : // casa
      20             : #include <synthesis/MeasurementEquations/SideBandSeparator.h>
      21             : 
      22             : using namespace std ;
      23             : using namespace casacore ;
      24             : 
      25             : namespace casa {
      26             : 
      27             : // constructors
      28           0 : SideBandSeparatorBase::SideBandSeparatorBase(const vector<string>& inputname)
      29             : {
      30           0 :   init();
      31           0 :   setInput(inputname);
      32             :   {// logging
      33           0 :         LogIO os(LogOrigin("SideBandSeparatorBase","SideBandSeparatorBase()", WHERE));
      34           0 :     os << "Found " << inputNames_.size() << " images." << LogIO::POST;
      35           0 :     os << "Input Data to be processed:" << LogIO::POST;
      36           0 :     for (size_t i = 0; i < inputNames_.size(); ++i) {
      37           0 :       os << "\t" << inputNames_[i] << LogIO::POST;
      38             :     }
      39             :   }
      40           0 : };
      41             : 
      42           0 : SideBandSeparatorBase::~SideBandSeparatorBase()
      43             : {
      44           0 : };
      45             : 
      46           0 : void SideBandSeparatorBase::init()
      47             : {
      48             :   // shifts
      49           0 :   initshift();
      50             :   // image list
      51           0 :   inputNames_.resize(0);
      52             :   // solution parameters
      53           0 :   otherside_ = false;
      54           0 :   doboth_ = false;
      55           0 :   rejlimit_ = 0.2;
      56           0 : };
      57             : 
      58           0 : void SideBandSeparatorBase::initshift()
      59             : {
      60             :   // shifts
      61           0 :   nshift_ = 0;
      62           0 :   nchan_ = 0;
      63           0 :   sigShift_.resize(0);
      64           0 :   imgShift_.resize(0);
      65           0 : };
      66             : 
      67           0 : void SideBandSeparatorBase::setInput(const vector<string>& inputname) {
      68           0 :   inputNames_.resize(0);
      69             :   // check existence of images
      70           0 :   for (size_t i = 0 ; i < inputname.size(); ++i) {
      71           0 :     if (checkFile(inputname[i], "d")) {
      72           0 :           inputNames_.push_back(inputname[i]);
      73             :         } else {
      74           0 :           inputNames_.resize(0);
      75           0 :           throw( AipsError("Could not find "+inputname[i]) );
      76             :         }
      77             :   }
      78           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","setImage()", WHERE));
      79           0 :   if (inputNames_.size() < 2)
      80           0 :           throw( AipsError("At least two valid input data are required for processing") );
      81           0 : }
      82             : 
      83           0 : void SideBandSeparatorBase::setShift(const vector<double> &shift, const bool signal)
      84             : {
      85           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","setShift()", WHERE));
      86           0 :   if (shift.size() != 0 && shift.size() != inputNames_.size())
      87           0 :           throw( AipsError("The number of shift should match that of images") );
      88           0 :   vector<double> *target = signal ? &sigShift_ : &imgShift_;
      89           0 :   target->resize(shift.size());
      90           0 :   for (unsigned int i = 0; i < shift.size(); i++)
      91           0 :           target->at(i) = - shift[i]; /// NOTE if spw shifts +3ch, need to shift back -3ch in operation.
      92             : 
      93           0 :   if (target->size() == 0) {
      94           0 :     os << "Channel shifts of " << (signal ? "SIGNAL" : "IMAGE") << " sideband are cleared." << LogIO::POST;
      95             :   } else {
      96           0 :     os << "Channel shifts of " << (signal ? "SIGNAL" : "IMAGE") << " sideband are set: ( ";
      97           0 :     for (unsigned int i = 0; i < target->size(); i++) {
      98           0 :       os << (signal ? sigShift_[i] : imgShift_[i]);
      99           0 :       if (i != target->size()-1) os << " , ";
     100             :     }
     101           0 :     os << " ) [channels]" << LogIO::POST;
     102             :   }
     103           0 : };
     104             : 
     105           0 : void SideBandSeparatorBase::setThreshold(const double limit)
     106             : {
     107           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","setThreshold()", WHERE));
     108           0 :   if (limit <= 0 || limit >= 1.0)
     109           0 :     throw( AipsError("Rejection limit should be > 0.0 and < 1.0") );
     110             : 
     111           0 :   rejlimit_ = limit;
     112           0 :   os << "Rejection limit is set to " << rejlimit_ << LogIO::POST;
     113           0 : };
     114             : 
     115             : /////////////// PROTECTED FUNCTIONS //////////////////////
     116             : 
     117           0 : size_t SideBandSeparatorBase::setupShift()
     118             : {
     119           0 :           LogIO os(LogOrigin("SideBandSeparatorBase","setupShift()", WHERE));
     120           0 :         if (sigShift_.size() > 0 && imgShift_.size() > 0) {
     121           0 :                 return sigShift_.size();
     122           0 :         } else if (sigShift_.size() > 0 && imgShift_.size() == 0) {
     123           0 :                 os << "Channel shift set only for signal sideband. Assuming the same shift in the opposite direction." << LogIO::POST;
     124           0 :                 imgShift_.resize(sigShift_.size());
     125           0 :                 for (size_t i = 0; i < sigShift_.size(); ++i) {
     126           0 :                         imgShift_[i] = - sigShift_[i];
     127             :                 }
     128           0 :         } else if (sigShift_.size() == 0 && imgShift_.size() > 0) {
     129           0 :                 os << "Channel shift set only for image sideband. Assuming the same shift in the opposite direction." << LogIO::POST;
     130           0 :                 sigShift_.resize(imgShift_.size());
     131           0 :                 for (size_t i = 0; i < imgShift_.size(); ++i) {
     132           0 :                         sigShift_[i] = - imgShift_[i];
     133             :                 }
     134             :         } else {
     135           0 :                 throw( AipsError("Channel shift was not been set.") );
     136             :         }
     137           0 :         return sigShift_.size();
     138             : }
     139             : 
     140           0 : Vector<bool> SideBandSeparatorBase::collapseMask(const Matrix<bool> &flagMat,
     141             :                                          const vector<uInt> &inIdvec,
     142             :                                          const bool signal)
     143             : {
     144           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","collapseFlag()", WHERE));
     145           0 :   if (inIdvec.size() == 0)
     146           0 :     throw(AipsError("Internal error. Table index is not defined."));
     147           0 :   if (flagMat.ncolumn() != inIdvec.size())
     148           0 :     throw(AipsError("Internal error. The row number of input matrix is not conformant."));
     149           0 :   if (flagMat.nrow() != nchan_)
     150           0 :     throw(AipsError("Internal error. The channel size of input matrix is not conformant."));
     151             : 
     152           0 :   const size_t nspec = inIdvec.size();
     153             :   vector<double> *thisShift;
     154           0 :   if (signal == otherside_) {
     155             :     // (solve signal && solveother = T) OR (solve image && solveother = F)
     156           0 :     thisShift = &imgShift_;
     157             :   } else {
     158             :     // (solve signal && solveother = F) OR (solve image && solveother = T)
     159           0 :     thisShift =  &sigShift_;
     160             :  }
     161             : 
     162           0 :   Vector<bool> outflag(nchan_, true);
     163             :   double tempshift;
     164           0 :   Vector<bool> shiftvec(nchan_, true);
     165           0 :   Vector<bool> accflag(nchan_, true);
     166             :   uInt shiftId;
     167           0 :   for (uInt i = 0 ; i < nspec; ++i) {
     168           0 :     shiftId = inIdvec[i];
     169           0 :     tempshift = - thisShift->at(shiftId);
     170           0 :     shiftFlag(flagMat.column(i), tempshift, shiftvec);
     171             :     // Now accumulate Mask (true only if all data is valid)
     172           0 :     for (uInt j = 0 ; j < nchan_ ; ++j)
     173             : //      accflag[j] |= shiftvec[j];
     174           0 :         accflag[j] &= shiftvec[j];
     175             :   }
     176           0 :   outflag = accflag;
     177             :   // Shift back Flag
     178             :   //cout << "Shifting FLAG back to " << thisShift->at(0) << " channels" << endl;
     179             :   //shiftFlag(accflag, thisShift->at(0), outflag);
     180             : 
     181           0 :   return outflag;
     182             : }
     183             : 
     184             : 
     185           0 : Vector<float> SideBandSeparatorBase::solve(const Matrix<float> &specmat,
     186             :                                    const vector<uInt> &inIdvec,
     187             :                                    const bool signal)
     188             : {
     189           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","solve()", WHERE));
     190           0 :   if (inIdvec.size() == 0)
     191           0 :     throw(AipsError("Internal error. Table index is not defined."));
     192           0 :   if (specmat.ncolumn() != inIdvec.size())
     193           0 :     throw(AipsError("Internal error. The row number of input matrix is not conformant."));
     194           0 :   if (specmat.nrow() != nchan_)
     195           0 :     throw(AipsError("Internal error. The channel size of input matrix is not conformant."));
     196             : 
     197             : 
     198             :   os << LogIO::DEBUG1 << "Solving " << (signal ? "SIGNAL" : "IMAGE") << " sideband."
     199           0 :      << LogIO::POST;
     200             : 
     201           0 :   const size_t nspec = inIdvec.size();
     202             :   vector<double> *thisShift, *otherShift;
     203           0 :   if (signal == otherside_) {
     204             :     // (solve signal && solveother = T) OR (solve image && solveother = F)
     205           0 :     thisShift = &imgShift_;
     206           0 :     otherShift = &sigShift_;
     207           0 :     os << LogIO::DEBUG1 << "Image sideband will be deconvolved." << LogIO::POST;
     208             :   } else {
     209             :     // (solve signal && solveother = F) OR (solve image && solveother = T)
     210           0 :     thisShift =  &sigShift_;
     211           0 :     otherShift = &imgShift_;
     212           0 :     os << LogIO::DEBUG1 << "Signal sideband will be deconvolved." << LogIO::POST;
     213             :  }
     214             : 
     215           0 :   vector<double> spshift(nspec);
     216           0 :   Matrix<float> shiftSpecmat(nchan_, nspec, 0.);
     217             :   double tempshift;
     218           0 :   Vector<float> shiftspvec;
     219             :   uInt shiftId;
     220           0 :   for (uInt i = 0 ; i < nspec; i++) {
     221           0 :     shiftId = inIdvec[i];
     222           0 :     spshift[i] = otherShift->at(shiftId) - thisShift->at(shiftId);
     223           0 :     tempshift = - thisShift->at(shiftId);
     224           0 :     shiftspvec.reference(shiftSpecmat.column(i));
     225           0 :     shiftSpectrum(specmat.column(i), tempshift, shiftspvec);
     226             :   }
     227             : 
     228           0 :   Matrix<float> convmat(nchan_, nspec*(nspec-1)/2, 0.);
     229           0 :   vector<float> thisvec(nchan_, 0.);
     230             : 
     231             :   float minval, maxval;
     232             :   {//Debug
     233           0 :           minMax(minval, maxval, shiftSpecmat);
     234             :           os << LogIO::DEBUG1 << "Max/Min of input Matrix = (max: " << maxval
     235           0 :                           << ", min: " << minval << ")" << LogIO::POST;
     236             :   }
     237             : 
     238           0 :   os << LogIO::DEBUG1 <<  "starting deconvolution" << LogIO::POST;
     239           0 :   deconvolve(shiftSpecmat, spshift, rejlimit_, convmat);
     240             : 
     241             :   {//Debug
     242           0 :           minMax(minval, maxval, convmat);
     243             :           os << LogIO::DEBUG1 <<  "Max/Min of output Matrix = (max: " << maxval
     244           0 :                           << ", min: " << minval << ")" << LogIO::POST;
     245             :   }
     246             : 
     247           0 :   aggregateMat(convmat, thisvec);
     248             : 
     249           0 :   if (!otherside_) return Vector<float>(thisvec);
     250             : 
     251             :   // subtract from the other side band.
     252           0 :   vector<float> othervec(nchan_, 0.);
     253           0 :   subtractFromOther(shiftSpecmat, thisvec, spshift, othervec);
     254           0 :   return Vector<float>(othervec);
     255             : };
     256             : 
     257             : 
     258           0 : void SideBandSeparatorBase::shiftSpectrum(const Vector<float> &invec,
     259             :                                   double shift,
     260             :                                   Vector<float> &outvec)
     261             : {
     262           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","shiftSpectrum()", WHERE));
     263           0 :   if (invec.size() != nchan_)
     264           0 :     throw(AipsError("Internal error. The length of input vector differs from nchan_"));
     265           0 :   if (outvec.size() != nchan_)
     266           0 :     throw(AipsError("Internal error. The length of output vector differs from nchan_"));
     267             : 
     268             : //  cout <<  "Start shifting spectrum for " << shift << " channels" << endl;
     269             : 
     270             :   // tweak shift to be in 0 ~ nchan_-1
     271           0 :   if ( fabs(shift) > nchan_ ) shift = fmod(shift, nchan_);
     272           0 :   if (shift < 0.) shift += nchan_;
     273           0 :   double rweight = fmod(shift, 1.);
     274           0 :   if (rweight < 0.) rweight += 1.;
     275           0 :   double lweight = 1. - rweight;
     276             :   uInt lchan, rchan;
     277             : 
     278           0 :   outvec = 0;
     279           0 :   for (uInt i = 0 ; i < nchan_ ; i++) {
     280           0 :     lchan = uInt( floor( fmod( (i + shift), nchan_ ) ) );
     281             :     if (lchan < 0.) lchan += nchan_;
     282           0 :     rchan = ( (lchan + 1) % nchan_ );
     283           0 :     outvec(lchan) += invec(i) * lweight;
     284           0 :     outvec(rchan) += invec(i) * rweight;
     285             : 
     286             : //    if (i == 2350 || i== 2930) {
     287             : //      cout << "Channel= " << i << " of input vector: " << endl;
     288             : //      cout << "L channel = " << lchan << endl;
     289             : //      cout << "R channel = " << rchan << endl;
     290             : //      cout << "L weight = " << lweight << endl;
     291             : //      cout << "R weight = " << rweight << endl;
     292             : //    }
     293             :   }
     294           0 : };
     295             : 
     296             : 
     297           0 : void SideBandSeparatorBase::shiftFlag(const Vector<bool> &invec,
     298             :                                   double shift,
     299             :                                   Vector<bool> &outvec)
     300             : {
     301           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","shiftFlag()", WHERE));
     302           0 :   if (invec.size() != nchan_)
     303           0 :     throw(AipsError("Internal error. The length of input vector differs from nchan_"));
     304           0 :   if (outvec.size() != nchan_)
     305           0 :     throw(AipsError("Internal error. The length of output vector differs from nchan_"));
     306             : 
     307             : //  cout << "Start shifting flag for " << shift << "channels" << endl;
     308             : 
     309             :   // shift is almost integer think it as int.
     310             :   // tolerance should be in 0 - 1
     311           0 :   double tolerance = 0.01;
     312             :   // tweak shift to be in 0 ~ nchan_-1
     313           0 :   if ( fabs(shift) > nchan_ ) shift = fmod(shift, nchan_);
     314           0 :   if (shift < 0.) shift += nchan_;
     315           0 :   double rweight = fmod(shift, 1.);
     316           0 :   bool ruse(true), luse(true);
     317           0 :   if (rweight < 0.) rweight += 1.;
     318           0 :   if (rweight < tolerance){
     319             :     // the shift is almost lchan
     320           0 :     ruse = false;
     321           0 :     luse = true;
     322             :   }
     323           0 :   if (rweight > 1-tolerance){
     324             :     // the shift is almost rchan
     325           0 :     ruse = true;
     326           0 :     luse = false;
     327             :   }
     328             :   uInt lchan, rchan;
     329             : 
     330           0 :   outvec = false;
     331           0 :   for (uInt i = 0 ; i < nchan_ ; i++) {
     332           0 :     lchan = uInt( floor( fmod( (i + shift), nchan_ ) ) );
     333             :     if (lchan < 0.) lchan += nchan_;
     334           0 :     rchan = ( (lchan + 1) % nchan_ );
     335           0 :     outvec(lchan) |= (invec(i) && luse);
     336           0 :     outvec(rchan) |= (invec(i) && ruse);
     337             : 
     338             : //    if (i == 2350 || i == 2930) {
     339             : //      cout << "Channel= " << i << " of input vector: " << endl;
     340             : //      cout << "L channel = " << lchan << endl;
     341             : //      cout << "R channel = " << rchan << endl;
     342             : //      cout << "L channel will be " << (luse ? "used" : "ignored") << endl;
     343             : //      cout << "R channel will be " << (ruse ? "used" : "ignored") << endl;
     344             : //    }
     345             :   }
     346           0 : };
     347             : 
     348             : 
     349           0 : void SideBandSeparatorBase::deconvolve(Matrix<float> &specmat,
     350             :                                const vector<double> shiftvec,
     351             :                                const double threshold,
     352             :                                Matrix<float> &outmat)
     353             : {
     354           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","deconvolve()", WHERE));
     355           0 :   if (specmat.nrow() != nchan_)
     356           0 :     throw(AipsError("Internal error. The length of input matrix differs from nchan_"));
     357           0 :   if (specmat.ncolumn() != shiftvec.size())
     358           0 :     throw(AipsError("Internal error. The number of input shifts and spectrum  differs."));
     359             : 
     360             :   float minval, maxval;
     361             :   {//Debug
     362           0 :           minMax(minval, maxval, specmat);
     363             :           os << LogIO::DEBUG1 <<  "Max/Min of input Matrix = (max: " << maxval
     364           0 :                           << ", min: " << minval << ")" << LogIO::POST;
     365             :   }
     366             : 
     367           0 :   uInt ninsp = shiftvec.size();
     368           0 :   outmat.resize(nchan_, ninsp*(ninsp-1)/2, 0.);
     369           0 :   Matrix<Complex> fftspmat(nchan_/2+1, ninsp, Complex(0.));
     370           0 :   Vector<float> rvecref(nchan_, 0.);
     371           0 :   Vector<Complex> cvecref(nchan_/2+1, Complex(0.));
     372           0 :   uInt icol = 0;
     373           0 :   unsigned int nreject = 0;
     374             : 
     375           0 :   os << LogIO::DEBUG1 <<  "Starting initial FFT. The number of input spectra = " << ninsp << LogIO::POST;
     376           0 :   os << LogIO::DEBUG1 <<  "out matrix has ncolumn = " << outmat.ncolumn() << LogIO::POST;
     377             : 
     378           0 :   for (uInt isp = 0 ; isp < ninsp ; isp++) {
     379           0 :     rvecref.reference( specmat.column(isp) );
     380           0 :     cvecref.reference( fftspmat.column(isp) );
     381             : 
     382             :     {//Debug
     383           0 :         minMax(minval, maxval, rvecref);
     384             :         os << LogIO::DEBUG1 << "Max/Min of inv FFTed Matrix = (max: " << maxval
     385           0 :                         << ", min: " << minval << ")" << LogIO::POST;
     386             :     }
     387             : 
     388           0 :     fftsf.fft0(cvecref, rvecref, true);
     389             :   }
     390             : 
     391             :   //Liberate from reference
     392           0 :   rvecref.unique();
     393             : 
     394           0 :   Vector<Complex> cspec(nchan_/2+1, Complex(0.));
     395           0 :   const double PI = 6.0 * asin(0.5);
     396           0 :   const double nchani = 1. / (float) nchan_;
     397           0 :   const Complex trans(0., 1.);
     398             : 
     399           0 :   os << LogIO::DEBUG1 <<  "starting actual deconvolution" << LogIO::POST;
     400           0 :   for (uInt j = 0 ; j < ninsp ; j++) {
     401           0 :     for (uInt k = j+1 ; k < ninsp ; k++) {
     402           0 :       const double dx = (shiftvec[k] - shiftvec[j]) * 2. * PI * nchani;
     403             : 
     404           0 :       for (uInt ichan = 0 ; ichan < cspec.size() ; ichan++){
     405           0 :           cspec[ichan] = ( fftspmat(ichan, j) + fftspmat(ichan, k) )*0.5;
     406           0 :           double phase = dx*ichan;
     407           0 :           if ( fabs( sin(phase) ) > threshold){
     408           0 :                   cspec[ichan] += ( fftspmat(ichan, j) - fftspmat(ichan, k) ) * 0.5
     409           0 :                                   * trans * cos(0.5*phase) / sin(0.5*phase);
     410             : //                          * trans * sin(phase) / ( 1. - cos(phase) );
     411             :           } else {
     412           0 :                   nreject++;
     413             :           }
     414             :       } // end of channel loop
     415             : //      os << LogIO::DEBUG1 <<  "done calculation of cspec" << LogIO::POST;
     416             : 
     417           0 :       Vector<Float> rspec;
     418           0 :       rspec.reference( outmat.column(icol) );
     419             : 
     420             : //      os << LogIO::DEBUG1 <<  "Starting inverse FFT. icol = " << icol << LogIO::POST;
     421           0 :       fftsi.fft0(rspec, cspec, false);
     422             : 
     423           0 :       icol++;
     424             :     }
     425             :   }
     426             : 
     427             :   {//Debug
     428           0 :           minMax(minval, maxval, outmat);
     429           0 :           os << LogIO::DEBUG1 <<  "Max/Min of inv FFTed Matrix = (max: " << maxval << ", min: " << minval << ")" << LogIO::POST;
     430             :   }
     431             : 
     432             :   os << LogIO::DEBUG1 << "Threshold = " << threshold
     433           0 :                   << ", Rejected channels = " << nreject << LogIO::POST;
     434           0 : };
     435             : 
     436             : 
     437           0 : void SideBandSeparatorBase::aggregateMat(const Matrix<float> &inmat,
     438             :                                  vector<float> &outvec)
     439             : {
     440           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","aggregateMat()", WHERE));
     441           0 :   if (inmat.nrow() != nchan_)
     442           0 :     throw(AipsError("Internal error. The row numbers of input matrix differs from nchan_"));
     443             : //   if (outvec.size() != nchan_)
     444             : //     throw(AipsError("Internal error. The size of output vector should be equal to nchan_"));
     445             : 
     446             :   os << LogIO::DEBUG1 << "Averaging " << inmat.ncolumn() << " spectra in the input matrix."
     447           0 :      << LogIO::POST;
     448             : 
     449           0 :   const uInt nspec = inmat.ncolumn();
     450           0 :   const double scale = 1./( (double) nspec );
     451             :   // initialize values with 0
     452           0 :   outvec.assign(nchan_, 0);
     453           0 :   for (uInt isp = 0 ; isp < nspec ; isp++) {
     454           0 :     for (uInt ich = 0 ; ich < nchan_ ; ich++) {
     455           0 :       outvec[ich] += inmat(ich, isp);
     456             :     }
     457             :   }
     458             : 
     459           0 :   vector<float>::iterator iter;
     460           0 :   for (iter = outvec.begin(); iter != outvec.end(); iter++){
     461           0 :     *iter *= scale;
     462             :   }
     463           0 : };
     464             : 
     465           0 : void SideBandSeparatorBase::subtractFromOther(const Matrix<float> &shiftmat,
     466             :                                       const vector<float> &invec,
     467             :                                       const vector<double> &shift,
     468             :                                       vector<float> &outvec)
     469             : {
     470           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","subtractFromOther()", WHERE));
     471           0 :   if (shiftmat.nrow() != nchan_)
     472           0 :     throw(AipsError("Internal error. The row numbers of input matrix differs from nchan_"));
     473           0 :   if (invec.size() != nchan_)
     474           0 :     throw(AipsError("Internal error. The length of input vector should be nchan_"));
     475           0 :   if (shift.size() != shiftmat.ncolumn())
     476           0 :     throw(AipsError("Internal error. The column numbers of input matrix != the number of elements in shift"));
     477             : 
     478           0 :   const uInt nspec = shiftmat.ncolumn();
     479           0 :   Vector<float> subsp(nchan_, 0.), shiftsub;
     480           0 :   Matrix<float> submat(nchan_, nspec, 0.);
     481           0 :   for (uInt isp = 0 ; isp < nspec ; isp++) {
     482           0 :     for (uInt ich = 0; ich < nchan_ ; ich++) {
     483           0 :       subsp(ich) = shiftmat(ich, isp) - invec[ich];
     484             :     }
     485           0 :     shiftsub.reference(submat.column(isp));
     486             :     // shift back spectrum so that other side stays still.
     487           0 :     shiftSpectrum(subsp, -shift[isp], shiftsub);
     488             :   }
     489             : 
     490           0 :   aggregateMat(submat, outvec);
     491           0 : };
     492             : 
     493           0 : bool SideBandSeparatorBase::interpolateMaskedChannels(Array<float> spectrum,
     494             :                 const Array<bool> mask)
     495             : {
     496             : //      if (spectrum.ndim() != 1 || mask.ndim() != 1)
     497             : //              throw AipsError("Array arguments must be 1-dimension.");
     498           0 :         if (spectrum.size() != mask.size())
     499           0 :                 throw AipsError("Size mismatch between spectrum and mask.");
     500           0 :         size_t num_chan = spectrum.size();
     501           0 :         float* spectrum_p = spectrum.data();
     502           0 :         const bool* mask_p = mask.data();
     503             :         // get the first and the last valid channel IDs.
     504           0 :         size_t ledge=0, redge=num_chan-1;
     505           0 :         while (!mask_p[ledge] && ledge < num_chan-1) {
     506           0 :                 ++ledge;
     507             :         }
     508           0 :         while (!mask_p[redge] && redge > 0) {
     509           0 :                 --redge;
     510             :         }
     511             :         // Return if no valid channel
     512           0 :         if (redge < ledge) return false;
     513             :         // Nearest-neighbor for edges;
     514           0 :         for (size_t i = 0; i < ledge; ++i) spectrum_p[i] = spectrum_p[ledge];
     515           0 :         for (size_t i = num_chan-1; i > redge; --i) spectrum_p[i] = spectrum_p[redge];
     516             :         // Linear interpolation for intermediate gaps
     517           0 :         size_t mstart = -1, mend = -1, i0;
     518             :         float slope;
     519           0 :         for (size_t i = ledge+1; i < redge; ++i) {
     520           0 :                 if (!mask_p[i]) {
     521             :                         // the first masked channel
     522           0 :                         mstart=i;
     523             :                         // the last valid channel
     524           0 :                         i0 = mstart-1;
     525             :                         // search for the end of masked channel range
     526           0 :                         while(!mask_p[i] && i < redge) {
     527           0 :                                 mend = i;
     528           0 :                                 ++i;
     529             :                         }
     530             :                         // 'mend' points to the last masked channel
     531             :                         // while 'i' points to the next valid channel
     532           0 :                         slope = (spectrum_p[i] - spectrum_p[i0])/static_cast<float>(i-i0);
     533           0 :                         for (size_t j = mstart; j < mend+1; ++j) {
     534           0 :                                 spectrum_p[j] = slope*static_cast<float>(j-i0) + spectrum_p[i0];
     535             :                         }
     536           0 :                         mstart = -1;
     537           0 :                         mend = -1;
     538             :                 }
     539             :         }
     540           0 :         return true;
     541             : }
     542             : 
     543           0 : Bool SideBandSeparatorBase::checkFile(const string name, string type)
     544             : {
     545           0 :   File file(name);
     546           0 :   if (!file.exists()){
     547           0 :     return false;
     548           0 :   } else if (type.empty()) {
     549           0 :     return true;
     550             :   } else {
     551             :     // Check for file type
     552           0 :     switch (std::tolower(type[0])) {
     553           0 :     case 'f':
     554           0 :       return file.isRegular(True);
     555           0 :     case 'd':
     556           0 :       return file.isDirectory(True);
     557           0 :     case 's':
     558           0 :       return file.isSymLink();
     559           0 :     default:
     560           0 :       throw AipsError("Invalid file type. Available types are 'file', 'directory', and 'symlink'.");
     561             :     }
     562             :   }
     563             : };
     564             : 
     565             : ///////////////////////////////////////////////////////////////////////////////////
     566           0 : SideBandSeparatorII::SideBandSeparatorII(const std::vector<std::string>& imagename)
     567           0 : : SideBandSeparatorBase (imagename)
     568             : {
     569           0 :         initLocal();
     570           0 :         checkImage();
     571           0 : };
     572             : 
     573           0 : void SideBandSeparatorII::initLocal() {
     574           0 :         refFreqPix_ = 0.0;
     575           0 :         refFreqHz_ = -1.0;
     576           0 : }
     577             : 
     578           0 : void SideBandSeparatorII::checkImage() {
     579           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","setImage()", WHERE));
     580             : 
     581             :   // check image axes (npix, incr, ref, ndim)
     582           0 :   os << "Image axes check. Using the first image as the template" << LogIO::POST;
     583           0 :   CoordinateSystem csys0;
     584           0 :   IPosition npix0;
     585           0 :   if (!getImageCoordinate(inputNames_[0], csys0, npix0)) {
     586           0 :           throw( AipsError("Invalid image "+inputNames_[0]) );
     587             :   }
     588             :   // Summary
     589           0 :   os << "Template image coordinate:" << LogIO::POST;
     590           0 :   os << "\tndim\t" << csys0.nCoordinates() << LogIO::POST;
     591           0 :   os << "\tAxes\t" << csys0.worldAxisNames() << LogIO::POST;
     592           0 :   os << "\tnPix\t" << npix0 << LogIO::POST;
     593           0 :   os << "\tRefPix\t" << csys0.referencePixel() << LogIO::POST;
     594           0 :   os << "\tRefPValt" << csys0.referenceValue() << LogIO::POST;
     595           0 :   os << "\tIncr\t" << csys0.increment() << LogIO::POST;
     596             : 
     597           0 :   for (size_t i = 1; i < inputNames_.size(); ++i){
     598           0 :           if(!compareImageAxes(inputNames_[i], csys0, npix0))
     599           0 :                   throw( AipsError("Image axes mismatch: "+inputNames_[0]) );
     600             :   }
     601           0 : }
     602             : 
     603           0 : bool SideBandSeparatorII::getImageCoordinate(const string& imagename, CoordinateSystem &csys, IPosition &npix) {
     604           0 :           LogIO os(LogOrigin("SideBandSeparatorBase","setImage()", WHERE));
     605           0 :           auto ret = ImageFactory::fromFile(imagename);
     606           0 :       auto imageF = std::get<0>(ret);
     607           0 :       if (imageF) { //float image
     608           0 :                   os << "Found float image" << LogIO::POST;
     609           0 :                   npix = imageF->shape();
     610           0 :                   ImageMetaData<Float> immd(imageF);
     611           0 :                   vector<Int> myAxes;
     612           0 :                   csys =  immd.coordsys(myAxes);
     613           0 :                   return true;
     614           0 :           } else if (std::get<1>(ret)) { // complex image
     615           0 :                   os << "Found complex image" << LogIO::POST;
     616           0 :                   return false;
     617           0 :           } else if (std::get<2>(ret)) { // double image
     618           0 :                   os << "Found double image" << LogIO::POST;
     619           0 :                   return false;
     620           0 :           } else if (std::get<3>(ret)) { // complex double image
     621           0 :                   os << "Found complex double image" << LogIO::POST;
     622           0 :                   return false;
     623             :           } else {
     624           0 :                   os << LogIO::WARN << "Failed to open " << imagename << LogIO::POST;
     625           0 :                   return false;
     626             :           }
     627             : }
     628             : 
     629           0 : bool SideBandSeparatorII::compareImageAxes(const string& imagename, const CoordinateSystem &refcsys, const IPosition &refnpix)
     630             : {
     631           0 :         CoordinateSystem csys;
     632           0 :         IPosition npix;
     633           0 :         if (!getImageCoordinate(imagename, csys, npix)) {
     634           0 :                 throw( AipsError("Invalid image "+imagename) );
     635             :         }
     636           0 :         uInt ndim = refcsys.nWorldAxes();
     637           0 :         if (csys.nWorldAxes() != ndim || refnpix.size() != ndim || npix.size() != ndim) {
     638           0 :                 return false;
     639             :         }
     640           0 :         bool match = true;
     641           0 :         constexpr Double frac_tol = 0.1;
     642           0 :         for (uInt i = 0; i<refcsys.nCoordinates(); ++i) {
     643           0 :                 Double tolerance = frac_tol*abs(refcsys.increment()[i]);
     644           0 :                 match &= (npix[i]==refnpix[i]); // npix
     645           0 :                 match &= (abs(csys.increment()[i]-refcsys.increment()[i]) < tolerance); // incr
     646           0 :                 if (refcsys.type(i) == Coordinate::SPECTRAL) continue; // skip channel comparison
     647           0 :                 match &= (abs(csys.referencePixel()[i]-refcsys.referencePixel()[i]) < frac_tol); // refpix
     648           0 :                 match &= (abs(csys.referenceValue()[i]-refcsys.referenceValue()[i]) < tolerance); // refval
     649             :         }
     650           0 :         return match;
     651             : }
     652             : 
     653           0 : void SideBandSeparatorII::setImageBandFrequency(const double refpix, const Quantity refval)
     654             : {
     655           0 :     LogIO os(LogOrigin("SideBandSeparatorBase","setImageBandFrequency()", WHERE));
     656           0 :         double freq_hz = refval.getValue("Hz", True);
     657           0 :         if (freq_hz < 0.0) throw( AipsError("Frequency should be positive") );
     658           0 :         refFreqPix_ = refpix;
     659           0 :         refFreqHz_ = freq_hz;
     660           0 :         os << "Setting frequency axis of image band: " << refFreqHz_*1.e-9
     661           0 :                         << "GHz at channel " << refFreqPix_ << LogIO::POST;
     662           0 : }
     663             : 
     664           0 : void SideBandSeparatorII::separate(const string& outfile, const bool overwrite)
     665             : {
     666           0 :   LogIO os(LogOrigin("SideBandSeparatorBase","separate()", WHERE));
     667             :   /*** Check outputs ***/
     668           0 :   if (outfile.size() == 0)
     669           0 :           throw( AipsError("Output file name is undefined."));
     670           0 :   string const signame = outfile + ".signalband";
     671           0 :   string const imgname = outfile + ".imageband";
     672           0 :   if (checkFile(signame, "d") && !overwrite) {
     673           0 :                   throw( AipsError("Image "+signame+" already exists.") );
     674             :   }
     675           0 :   if (doboth_ && checkFile(imgname, "d") && !overwrite) {
     676           0 :           throw( AipsError("Image "+imgname+" already exists.") );
     677             :   }
     678             : 
     679             :   /*** Set up channel shift of image and signal sideband ***/
     680           0 :   nshift_ = setupShift();
     681           0 :   if (nshift_ < 2)
     682           0 :     throw( AipsError("At least 2 IFs are necessary for convolution.") );
     683           0 :   if (nshift_ != inputNames_.size())
     684           0 :             throw( AipsError("Internal error: nshift_ and image number differs.") );
     685             : 
     686             :   /*** Open input images (data model dependent) ***/
     687           0 :   vector<SPIIF> images(nshift_);
     688           0 :   for (size_t i = 0; i < nshift_; ++i) {
     689           0 :           auto ret = ImageFactory::fromFile(inputNames_[i]);
     690           0 :       auto imageF = std::get<0>(ret);
     691           0 :       if (! imageF)
     692           0 :                   throw( AipsError("Float image not found in "+inputNames_[i]) );
     693           0 :           images[i] = imageF;
     694             :   }
     695             :   /*** analyze axis of reference image (data model dependent) ***/
     696           0 :   SPIIF refImage = images[0];
     697           0 :   IPosition const npix = refImage->shape();
     698           0 :   uInt const ndim = npix.size();
     699           0 :   ImageMetaData<Float> const immd(refImage);
     700           0 :   vector<Int> myAxes;
     701           0 :   CoordinateSystem const csys =  immd.coordsys(myAxes);
     702           0 :   if (!csys.hasSpectralAxis())
     703           0 :           throw( AipsError("Could not find spectral axis.") );
     704           0 :   Int spax_id = csys.spectralAxisNumber();
     705           0 :   nchan_ = npix[spax_id];
     706           0 :   IPosition specArrayShape(ndim, 1), specVecShape(1, nchan_);
     707           0 :   specArrayShape[spax_id] = nchan_;
     708             : 
     709             :   /*** prepare output image (data model dependent) ***/
     710           0 :   SPIIF sigImg, imgImg;
     711           0 :   sigImg = ImageFactory::createImage<Float>(signame, csys, npix, True, overwrite, nullptr);
     712           0 :   if (doboth_) {
     713             :           /*** define frequency coordinate of image sideband ***/
     714           0 :           CoordinateSystem imgcsys(csys);
     715           0 :           if (refFreqHz_ < 0.0) {
     716           0 :                   os << LogIO::WARN << "Frequency information of image sideband is not set. Using the value of signal sideband" << LogIO::POST;
     717             :           } else {
     718           0 :                   Int spax_id = imgcsys.spectralAxisNumber();
     719           0 :                   Vector<Double> refpix = imgcsys.referencePixel();
     720           0 :                   Vector<Double> refval = imgcsys.referenceValue();
     721           0 :                   Vector<Double> incr = imgcsys.increment();
     722           0 :                   refpix[spax_id] = refFreqPix_;
     723           0 :                   refval[spax_id] = refFreqHz_;
     724           0 :                   incr[spax_id] *= -1.0;
     725           0 :                   imgcsys.setReferencePixel(refpix);
     726           0 :                   imgcsys.setReferenceValue(refval);
     727           0 :                   imgcsys.setIncrement(incr);
     728             :           }
     729           0 :           imgImg = ImageFactory::createImage<Float>(imgname, imgcsys, npix, True, overwrite, nullptr);
     730             :   }
     731             : 
     732           0 :   Matrix<float> specMat(nchan_, nshift_);
     733           0 :   Matrix<bool> maskMat(nchan_, nshift_);
     734           0 :   Array<float> sigSpec(specVecShape), imgSpec(specVecShape);
     735           0 :   Array<bool> sigMask(specVecShape), imgMask(specVecShape);
     736           0 :   vector<uInt> dataIdvec;
     737             : 
     738             :   /*** Generate FFTServer ***/
     739           0 :   fftsf.resize(IPosition(1, nchan_), FFTEnums::REALTOCOMPLEX);
     740           0 :   fftsi.resize(IPosition(1, nchan_), FFTEnums::COMPLEXTOREAL);
     741             : 
     742             :   /*** Loop over image pixel and separate sideband (data model dependent) ***/
     743           0 :   IPosition start(ndim), end(ndim), stride(ndim);
     744           0 :   for (int ipos = 0; ipos < npix.product()/nchan_; ipos++){
     745           0 :           dataIdvec.resize(0);
     746             :           /*** convert 1-D ipos to slicer in image coordinate ***/
     747           0 :           uInt denominator = 1;
     748           0 :           for (uInt i = 0; i < ndim; ++i) {
     749           0 :                   if ((Int) i == spax_id) {
     750           0 :                           start(i) = 0;
     751           0 :                           end(i) = nchan_-1;
     752           0 :                           stride(i) = 1;
     753           0 :                           denominator *= nchan_;
     754             :                   } else {
     755           0 :                           uInt pos = ((ipos/denominator) % npix[i]);
     756           0 :                           start(i) = pos;
     757           0 :                           end(i) = pos;
     758           0 :                           stride(i) = npix[i];
     759           0 :                           denominator *= npix[i];
     760             :                   }
     761             :           }
     762           0 :           Slicer const specSlicer(start, end, stride, Slicer::endIsLast);
     763             :     /*** Get a set of spectra to solve (data model dependent) ***/
     764           0 :     if (!getSpectraToSolve(images, specSlicer, specMat, maskMat, dataIdvec)){
     765           0 :         sigSpec = 0.0f;
     766           0 :         imgSpec = 0.0f;
     767           0 :         sigMask = false;
     768           0 :         imgMask = false;
     769             :     } else {
     770             :         /*** Solve signal sideband ***/
     771           0 :         sigSpec = solve(specMat, dataIdvec, true);
     772             :         /*** Aggregate channel mask  ***/
     773           0 :         sigMask = collapseMask(maskMat, dataIdvec, true);
     774           0 :         if (doboth_) {
     775             :           /*** Solve image sideband  ***/
     776           0 :           imgSpec = solve(specMat, dataIdvec, false);
     777             :           /*** Aggregate channel mask  ***/
     778           0 :           imgMask = collapseMask(maskMat, dataIdvec, false);
     779             :         }
     780             :     }
     781             :     /*** Signal side band ***/
     782             :     /*** now assign spec and mask to output image (data model dependent) ***/
     783           0 :     sigImg->putSlice(sigSpec.reform(specArrayShape), start, stride);
     784             :     /*** need to create a pixel mask if not any (data model dependent) ***/
     785           0 :     if (! sigImg->hasPixelMask()) {
     786           0 :         casacore::String maskName("");
     787           0 :         ImageMaskAttacher::makeMask(*sigImg, maskName, true, true, os, true);
     788             :     }
     789           0 :     sigImg->pixelMask().putSlice(sigMask.reform(specArrayShape), start, stride);
     790             :     /*** Image side band ***/
     791           0 :     if (doboth_) {
     792             :         /*** now assign spec and mask to output image  (data model dependent) ***/
     793           0 :         imgImg->putSlice(imgSpec.reform(specArrayShape), start, stride);
     794             :         /*** need to create a pixel mask if not any  (data model dependent) ***/
     795           0 :         if (! imgImg->hasPixelMask()) {
     796           0 :             casacore::String maskName("");
     797           0 :             ImageMaskAttacher::makeMask(*imgImg, maskName, true, true, os, true);
     798             :         }
     799           0 :         imgImg->pixelMask().putSlice(imgMask.reform(specArrayShape), start, stride);
     800             :     }
     801             :   } // end of row loop
     802             :   /*** Finally, save tables on disk (data model dependent) ***/
     803           0 :   sigImg.reset();
     804           0 :   imgImg.reset();
     805             : 
     806           0 : }
     807             : 
     808           0 : bool SideBandSeparatorII::getSpectraToSolve(const vector<SPIIF> &images, const Slicer &slicer,
     809             :                   Matrix<float>& specMat, Matrix<bool>& maskMat, vector<uInt>& imgIdvec){
     810           0 :         imgIdvec.resize(0);
     811           0 :         specMat.resize(nchan_, nshift_);
     812           0 :         maskMat.resize(nchan_, nshift_);
     813           0 :         Array<float> spec(IPosition(1,nchan_));
     814           0 :         Array<bool> mask(IPosition(1,nchan_));
     815           0 :         size_t nspec = 0;
     816           0 :         for (size_t i = 0; i < images.size(); ++i) {
     817           0 :                 images[i]->getSlice(spec, slicer, False);
     818           0 :                 images[i]->getMaskSlice(mask, slicer, False);
     819             :                 // Do interpolation of masked channels.
     820             :                 // The method return false if there is no valid data (mask is true for valid pixels)
     821             :                 // Skip if no valid channel in this spectrum
     822           0 :                 if (!interpolateMaskedChannels(spec, mask)) continue;
     823             :                 // register this spectrum and mask to matrices to solve
     824           0 :                 specMat.column(nspec) = spec;
     825           0 :                 maskMat.column(nspec) = mask;
     826           0 :                 imgIdvec.push_back((uInt) i);
     827           0 :                 ++nspec;
     828             :         } // end of image loop
     829           0 :         if (nspec < nshift_) {
     830           0 :                 specMat.resize(nchan_, nspec, true);
     831           0 :                 maskMat.resize(nchan_, nspec, true);
     832             :         }
     833           0 :         return nspec > 0;
     834             : }
     835             : 
     836             : } //# NAMESPACE CASA - END

Generated by: LCOV version 1.16