|
|||
NRAO Home > CASA > CASA Cookbook and User Reference Manual |
|
8.3.8 Line Fitting
Multi-component Gaussian fitting is done by creating a fitting object, specifying fit parameters and finally fitting the data. Fitting can be done on a scantable selection or an entire scantable using the auto_fit function.
f=sd.fitter() # create fitter object
msk=spave.create_mask([3928,4255]) # create mask region around line
f.set_function(gauss=1) # set a single gaussian component
f.set_scan(spave,msk) # set the scantable and region
#
# Automatically guess start values
f.fit() # fit
f.plot(residual=True) # plot residual
f.get_parameters() # retrieve fit parameters
# 0: peak = 0.786 K , centre = 4091.236 channel, FWHM = 70.586 channel
# area = 59.473 K channel
f.store_fit(’orions_hc3n_fit.txt’) # store fit
#
# To specify an initial guess:
f.set_function(gauss=1) # set a single gaussian component
f.set_gauss_parameters(0.4,4100,200\ # set initial guesses for Gaussian
,component=0) # for first component (0)
# (peak,center,fwhm)
#
# For multiple components set
# initial guesses for each, e.g.,
f.set_function(gauss=2) # set two gaussian components
f.set_gauss_parameters(0.4,4100,200\ # set initial guesses for Gaussian
,component=0) # for first component (0)
f.set_gauss_parameters(0.1,4200,100\ # set initial guesses for Gaussian
,component=1) # for second component (1)
More information about CASA may be found at the
CASA web page
Copyright © 2010 Associated Universities Inc., Washington, D.C.
This code is available under the terms of the GNU General Public Lincense
Home |
Contact Us |
Directories |
Site Map |
Help |
Privacy Policy |
Search