casa
$Rev:20696$
|
00001 //# ClarkCleanModel.h: this defines ClarkCleanModel 00002 //# Copyright (C) 1996,1997,1998,1999,2000,2003 00003 //# Associated Universities, Inc. Washington DC, USA. 00004 //# 00005 //# This library is free software; you can redistribute it and/or modify it 00006 //# under the terms of the GNU Library General Public License as published by 00007 //# the Free Software Foundation; either version 2 of the License, or (at your 00008 //# option) any later version. 00009 //# 00010 //# This library is distributed in the hope that it will be useful, but WITHOUT 00011 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00012 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 00013 //# License for more details. 00014 //# 00015 //# You should have received a copy of the GNU Library General Public License 00016 //# along with this library; if not, write to the Free Software Foundation, 00017 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 00018 //# 00019 //# Correspondence concerning AIPS++ should be addressed as follows: 00020 //# Internet email: aips2-request@nrao.edu. 00021 //# Postal address: AIPS++ Project Office 00022 //# National Radio Astronomy Observatory 00023 //# 520 Edgemont Road 00024 //# Charlottesville, VA 22903-2475 USA 00025 //# 00026 //# 00027 //# $Id$ 00028 00029 #ifndef SYNTHESIS_CLARKCLEANMODEL_H 00030 #define SYNTHESIS_CLARKCLEANMODEL_H 00031 00032 #include <casa/aips.h> 00033 #include <casa/Arrays/Matrix.h> 00034 #include <casa/Arrays/Vector.h> 00035 #include <casa/Arrays/Array.h> 00036 #include <synthesis/MeasurementEquations/ArrayModel.h> 00037 #include <synthesis/MeasurementEquations/Iterate.h> 00038 //#include <synthesis/MeasurementEquations/ResidualEquation.h> 00039 #include <synthesis/MeasurementEquations/ConvolutionEquation.h> 00040 #include <casa/Logging/LogIO.h> 00041 00042 namespace casa { //# NAMESPACE CASA - BEGIN 00043 00044 class ClarkCleanProgress; 00045 00046 // <summary> 00047 // A Class for performing the Clark Clean Algorithm on Arrays 00048 // </summary> 00049 00050 // <use visibility=export> 00051 00052 // <reviewed reviewer="" date="yyyy/mm/dd" tests="" demos=""> 00053 // </reviewed> 00054 00055 // <prerequisite> 00056 // <li> ResidualEquation/ConvolutionEquation 00057 // <li> LinearModel/LinearEquation Paradigm 00058 // </prerequisite> 00059 // 00060 // <etymology> 00061 // This class is called ClarkCleanModel because thats the algorithm it uses 00062 // deconvolve the model. 00063 // </etymology> 00064 // 00065 // <synopsis> 00066 // This class is used to perform the Clark Clean Algorithm on an 00067 // Array. Only the deconvolved model of the sky are directly stored by this 00068 // class. The point spread function (psf) and convolved (dirty) image are 00069 // stored in a companion class which is must be derived from 00070 // ResidualEquation. 00071 // 00072 // The cleaning works like this. The user constructs a ClarkCleanModel by 00073 // specifying an initial model of the sky. This can by be 00074 // one,two,three... dimensional depending on the dimension of the psf (see 00075 // below). The user then constructs a class which implements the forward 00076 // equation between the model and the dirty image. Typically this will be 00077 // the ConvolutionEquation class, although any class which has a 00078 // ResidualEquation interface will be work (but perhaps very slowly, as the 00079 // ConvolutionEquation class has member functions optimised for cleaning) 00080 // 00081 // The user then calls the solve() function (with the appropriate equation 00082 // class as an arguement), and this class will perform the Clark clean. 00083 // The various clean parameters are set (prior to calling solve) using the 00084 // functions derived from the Iterate class, in particular setGain(), 00085 // setNumberIterations() & setThreshold() (to set a flux limit). 00086 // 00087 // The solve() function does not return either the deconvolved model or the 00088 // residuals. The solved model can be obtained using the getModel() function 00089 // (derived from ArrayModel()) and the residual can be obtained using the 00090 // residual() member function of the Convolution/Residual Equation Class. 00091 // 00092 // The size and shape of the model used in this class MUST be the same as 00093 // the convolved data (Dirty Image), stored in the companion 00094 // ResidualEquation Class. However the model (and convolved data) can have 00095 // more dimensions than the psf, as well as a different size (either larger 00096 // or smaller). When the dimensionality is different the cleaning is done 00097 // independendtly in each "plane" of the model. (Note this has not 00098 // been implemented yet but is relatively simple to do if necessary). 00099 // 00100 // This multi-dimensionalty is exploited when cleaning arrays of 00101 // StokesVectors. Here the Array of StokesVectors is decomposed into a stack 00102 // of 4 Floating point arrays and the cleaning is done on all the the arrays 00103 // simultaneosly. The criterion for choosing the brightest pixel has been 00104 // generalised by using the "length" of the Stokesvector in 4 dimensional 00105 // space. 00106 // 00107 // A companion class to this one is MaskedClarkCleanModel. This provides 00108 // the same functionality but is used with MaskedArrays which indicate which 00109 // regions of the model to search for clean components. 00110 // 00111 // </synopsis> 00112 // 00113 // <example> 00114 // <srcblock> 00115 // Matrix<Float> psf(12,12), dirty(10,10), initialModel(10,10); 00116 // ...put appropriate values into psf, dirty, & initialModel.... 00117 // ClarkCleanModel<Float> deconvolvedModel(initialModel); 00118 // ConvolutionEquation convEqn(psf, dirty); 00119 // deconvolvedModel.setGain(0.2); 00120 // deconvolvedModel.setNumberIterations(1000); 00121 // Bool convWorked = deconvolvedModel.solve(convEqn); 00122 // Array<Float> finalModel, residuals; 00123 // if (convWorked){ 00124 // finalModel = deconvolvedModel.getModel(); 00125 // ConvEqn.residual(deconvolvedModel, finalResidual); 00126 // } 00127 // </srcblock> 00128 // </example> 00129 // 00130 // <motivation> 00131 // This class is needed to deconvolve images. 00132 // </motivation> 00133 // 00134 // <templating arg=T> 00135 // I have tested this class with Arrays of 00136 // <li> Float 00137 // <li> StokesVector 00138 // </templating> 00139 // 00140 // <todo asof="1996/05/02"> 00141 // <li> Make changes so that multidimensions work as advertised 00142 // <li> compare timing with other clean implementations (ie, Mark's 00143 // CleanTools, SDE, AIPS & miriad) 00144 // </todo> 00145 00146 class ClarkCleanModel: 00147 public ArrayModel<Float>, 00148 public Iterate 00149 { 00150 public: 00151 // The default constructor does nothing more than initialise a zero length 00152 // array to hold the deconvolved model. If this constructor is used then 00153 // the actual model must be set using the setModel() function of the 00154 // ArrayModel class. 00155 ClarkCleanModel(); 00156 // Construct the ClarkCleanModel object and initialise the model. 00157 ClarkCleanModel(Array<Float> & model); 00158 // Construct the ClarkCleanModel object and initialise the model ans mask 00159 ClarkCleanModel(Array<Float> & model, Array<Float> & mask); 00160 00161 void getMask(Array<Float>& mask) const; 00162 void setMask(const Array<Float>& mask); 00163 void setMask(Array<Float> & mask); 00164 00165 void getModel(Array<Float>& model) const; 00166 void setModel(const Array<Float>& model); 00167 void setModel(Array<Float> & model); 00168 00169 // Set/get the progress display 00170 // <group> 00171 virtual void setProgress(ClarkCleanProgress& ccp) { itsProgressPtr = &ccp; } 00172 virtual ClarkCleanProgress& getProgress() { return *itsProgressPtr; } 00173 // </group> 00174 00175 // Using a Clark clean deconvolution proceedure solve for an improved 00176 // estimate of the deconvolved object. The convolution/residual equation 00177 // contains the psf and dirty image. When called with a ResidualEquation 00178 // arguement a quite general interface is used that is slow. The 00179 // convolution equation contains functions that speed things up. The 00180 // functions return False if the deconvolution could not be done. 00181 // <group> 00182 Bool solve(ConvolutionEquation & eqn); 00183 Bool singleSolve(ConvolutionEquation & eqn, Array<Float>& residual); 00184 // </group> 00185 00186 // These functions set various "knobs" that the user can tweak and are 00187 // specific to the Clark clean algorithm. The more generic parameters 00188 // ie. clean gain, and maximum residual fluxlimit, are set using functions 00189 // in the Iterate base class. The get functions return the value that was 00190 // actually used after the cleaning was done. 00191 // <group> 00192 // set the size of the PSF used in the minor iterations. If not set it 00193 // defaults to the largest useful Psf (ie. min(modelSize*2, psfSize)) 00194 virtual void setPsfPatchSize(const IPosition & psfPatchSize); 00195 virtual IPosition getPsfPatchSize(); 00196 // Set the size of the histogram used to determine how many pixels are 00197 // "active" in a minor iteration. Default value is 1000 is OK for 00198 // everything except very small cleans. 00199 virtual void setHistLength(const uInt HistBins ); 00200 virtual uInt getHistLength(); 00201 // Set the maximum number of minor iterations to perform for each major 00202 // cycle. 00203 virtual void setMaxNumberMinorIterations(const uInt maxNumMinorIterations); 00204 virtual uInt getMaxNumberMinorIterations(); 00205 // Set and get the initial number of iterations 00206 virtual void setInitialNumberIterations(const uInt initialNumberIterations); 00207 virtual uInt getInitialNumberIterations(); 00208 // Set the maximum number of major cycles to perform 00209 virtual void setMaxNumberMajorCycles(const uInt maxNumMajorCycles); 00210 virtual uInt getMaxNumberMajorCycles(); 00211 // Set the maximum number of active pixels to use in the minor 00212 // iterations. The specified number can be exceeded if the topmost bin of 00213 // the histogram contains more pixels than specified here. The default is 00214 // 10,000 which is suitable for images of 512by512 pixels. Reduce this for 00215 // smaller images and increase it for larger ones. 00216 virtual void setMaxNumPix(const uInt maxNumPix ); 00217 virtual uInt getMaxNumPix(); 00218 // Set the maximum exterior psf value. This is used to determine when to 00219 // stop the minor itartions. This is normally determined from the psf and 00220 // the number set here is only used if this cannot be determined. The 00221 // default is zero. 00222 virtual void setMaxExtPsf(const Float maxExtPsf ); 00223 virtual Float getMaxExtPsf(); 00224 // An exponent on the F(m,n) factor (see Clark[1980]) which influences how 00225 // quickly active pixels are treated as unreliable. Larger values mean 00226 // more major iterations. The default is zero. I have no experience on 00227 // when to use this factor. 00228 virtual void setSpeedup(const Float speedup ); 00229 virtual Float getSpeedup(); 00230 // The structure of various AIPS++ algorithms creates major cycles around 00231 // the Clark Clean (or other deconvolution algrithms. The cycleSpeedup 00232 // parameter causes the threshold to edge up as 00233 // thresh = thresh_0 * 2^( iter/cycleSpeedup ); 00234 // ignored if cycleSpeedup <= 0. 00235 virtual void setCycleSpeedup(const Float speedup ); 00236 virtual Float getCycleSpeedup(); 00237 // We are overwriting Iterate's threshold() method to put out speedup in it 00238 virtual const Float threshold(); 00239 // The user can be asked whether to stop after every minor cycle 00240 virtual void setChoose(const Bool askForChoice); 00241 virtual Bool getChoose(); 00242 // </group> 00243 00244 private: 00245 // Do all the minor iterations for one major cycle. Cleaning stops 00246 // when the flux or iteration limit is reached. 00247 void doMinorIterations(Array<Float> & model, 00248 Matrix<Float> & pixelValue, 00249 const Matrix<Int> & pixelPos, 00250 const Int numPix, 00251 Matrix<Float> & psfPatch, 00252 Float fluxLimit, 00253 uInt & numberIterations, 00254 Float Fmn, 00255 const uInt totalIterations, 00256 Float& totalflux); 00257 // Find all the pixels in the residual that are greater than fluxlimit, and 00258 // store the values in the pixelsValue Matrix, and their positions in the 00259 // pixelPos Matrix. Increases the size of the output matrices as 00260 // necessary, but does not decrease them. So the actual number of "active" 00261 // pixels is returned. This will always be less than (or equal to) the matrix 00262 // size. 00263 Int cacheActivePixels(Matrix<Float> & pixVal, Matrix<Int> & pixPos, 00264 const Array<Float> & data, const Float fluxLimit); 00265 // make histogram of absolute values in array 00266 void absHistogram(Vector<Int> & hist, Float & minVal, 00267 Float & maxVal, const Array<Float> & data); 00268 // Determine the flux limit if we only select the maxNumPix biggest 00269 // residuals. Flux limit is not exact due to quantising by the histogram 00270 Float biggestResiduals(Float & maxRes, const uInt maxNumPix, 00271 const Float fluxLimit, const Array<Float> & residual); 00272 // Work out the size of the Psf patch to use. 00273 Float getPsfPatch(Array<Float>& psfPatch, ConvolutionEquation& eqn); 00274 // The maximum residual is the absolute maximum. 00275 Float maxResidual(const Array<Float> & residual); 00276 void maxVect(Vector<Float> & maxVal, Float & absVal, Int & offset, 00277 const Matrix<Float> & pixVal, const Int numPix); 00278 void subtractComponent(Matrix<Float> & pixVal, const Matrix<Int> & pixPos, 00279 const Int numPix, const Vector<Float> & maxVal, 00280 const Vector<Int> & maxPos, const Matrix<Float> & psf); 00281 Float absMaxBeyondDist(const IPosition &maxDist, const IPosition ¢re, 00282 const Array<Float> &array); 00283 Bool stopnow(); 00284 00285 uInt theHistBins; 00286 Float theMaxExtPsf; 00287 uInt theMaxNumberMinorIterations; 00288 uInt theInitialNumberIterations; 00289 Int theMaxNumberMajorCycles; 00290 uInt theMaxNumPix; 00291 IPosition thePsfPatchSize; 00292 Float theSpeedup; 00293 Float theCycleSpeedup; 00294 Bool theChoose; 00295 Array<Float> theMask; 00296 LogIO theLog; 00297 // There are too many iterations counters. 00298 // This one is required for theCycleSpeedup and threshold(), 00299 // and just keeps track of the total iterations done by THIS 00300 // ClarkCleanModel 00301 Int theIterCounter; 00302 ClarkCleanProgress* itsProgressPtr; 00303 Bool itsJustStarting; 00304 }; 00305 00306 00307 } //# NAMESPACE CASA - END 00308 00309 #endif