casa  $Rev:20696$
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Public Member Functions | Protected Member Functions | Private Member Functions
casa::Vector< T > Class Template Reference

A 1-D Specialization of the Array class. More...

#include <Vector.h>

Inheritance diagram for casa::Vector< T >:
casa::Array< T > casa::ArrayBase

List of all members.

Public Member Functions

 Vector ()
 A zero-length Vector.
 Vector (uInt Length)
 A Vector with a defined length and origin of zero.
 Vector (const IPosition &Length)
 Vector (uInt Length, const T &initialValue)
 A Vector with a defined length and origin of zero.
 Vector (const IPosition &Length, const T &initialValue)
 Vector (const Block< T > &other, Int nr)
 Create a Vector from the given Block "other." Make it length "nr" and copy over that many elements.
 Vector (const Block< T > &other)
 Create a Vector of lenght other.nelements() and copy over its values.
 Vector (const Vector< T > &other)
 Create a reference to other.
 Vector (const Array< T > &other)
 Create a reference to the other array.
 Vector (const IPosition &shape, T *storage, StorageInitPolicy policy=COPY)
 Create an Vector of a given shape from a pointer.
 Vector (const IPosition &shape, const T *storage)
 Create an Vector of a given shape from a pointer.
template<class U >
 Vector (const vector< T, U > &other)
 Create a Vector from an STL vector (see tovector() in Array for the reverse operation).
template<class U >
 Vector (const std::set< U > &other)
virtual ~Vector ()
 Define a destructor, otherwise the compiler makes a static one.
virtual void assign (const Array< T > &other)
 Assign the other array (which must be of dimension one) to this vector.
virtual void reference (const Array< T > &other)
 Create a reference to "other", which must be of dimension one.
void resize (uInt len, Bool copyValues=False)
 Resize this Vector to the given length.
virtual void resize (const IPosition &len, Bool copyValues=False)
virtual void resize ()
 Make this array a different shape.
Vector< T > & operator= (const Vector< T > &other)
 Assign to this Vector.
virtual Array< T > & operator= (const Array< T > &other)
 Other must be a 1-dimensional array.
Array< T > & operator= (const T &val)
 Set every element of this Vector to Val.
Vector< T > & operator= (const MaskedArray< T > &marray)
 Copy to this those values in marray whose corresponding elements in marray's mask are True.
void toBlock (Block< T > &other) const
 Convert a Vector to a Block, resizing the block and copying values.
T & operator[] (uInt index)
 Single-pixel addressing.
const T & operator[] (uInt index) const
 Get the subset given by the i-th value of the last axis.
T & operator() (const IPosition &i)
 Access a single element of the array.
const T & operator() (const IPosition &i) const
T & operator() (uInt index)
const T & operator() (uInt index) const
Vector< T > operator() (const Slice &slice)
 Take a slice of this vector.
const Vector< T > operator() (const Slice &slice) const
Array< T > operator() (const IPosition &blc, const IPosition &trc, const IPosition &incr)
 Slice using IPositions.
const Array< T > operator() (const IPosition &blc, const IPosition &trc, const IPosition &incr) const
Array< T > operator() (const IPosition &blc, const IPosition &trc)
 Get a reference to an array section extending from start to end (inclusive).
const Array< T > operator() (const IPosition &blc, const IPosition &trc) const
Array< T > operator() (const Slicer &slicer)
 Get a reference to an array section using a Slicer.
const Array< T > operator() (const Slicer &slicer) const
MaskedArray< T > operator() (const LogicalArray &mask) const
 The array is masked by the input LogicalArray.
MaskedArray< T > operator() (const LogicalArray &mask)
 Return a MaskedArray.
MaskedArray< T > operator() (const MaskedLogicalArray &mask) const
 The array is masked by the input MaskedLogicalArray.
MaskedArray< T > operator() (const MaskedLogicalArray &mask)
 Return a MaskedArray.
void shape (Int &Shape) const
 The length of the Vector.
const IPositionshape () const
 The length of each axis.
virtual void takeStorage (const IPosition &shape, T *storage, StorageInitPolicy policy=COPY)
 Replace the data values with those in the pointer storage.
virtual void takeStorage (const IPosition &shape, const T *storage)
 Since the pointer is const, a copy is always taken.
virtual Bool ok () const
 Verify that dimensionality is 1 and then call Array<T>::ok()

Protected Member Functions

virtual void doNonDegenerate (const Array< T > &other, const IPosition &ignoreAxes)
 Remove the degenerate axes from other and store result in this vector.

Private Member Functions

void initVector (const Block< T > &, Int nr)
 Helper functions for constructors.

Detailed Description

template<class T>
class casa::Vector< T >

A 1-D Specialization of the Array class.

Review Status

Reviewed By:
UNKNOWN
Date Reviewed:
before2004/08/25
Vector objects are one-dimensional specializations (e.g., more convenient
and efficient indexing) of the general Array class. You might also want
to look at the Array documentation to see inherited functionality. A
tutorial on using the array classes in general is available in the
"AIPS++ Programming Manual".

Generally the member functions of Array are also available in
Vector versions
which take an integer where the array needs an IPosition. Since the Vector
is one-dimensional, the IPositions are overkill, although you may
use those versions if you want to.
    Vector<Int> vi(100);  // Vector 100 elements long.
    vi.resize(50);        // Now only 50 long.

Slices may be taken with the Slice class. To take a slice, one "indexes" with Slice(start, length, inc) where end and inc are optional.

    Vector<Float> vf(100);
    //..\.
    vf(Slice(0,50,2)) = vf(Slice(1,50,2));  // Copy values from odd onto even
    Vector<Float> firstHalf, secondHalf;
    firstHalf.reference(vf(Slice(0,50)));
    secondHalf.reference(vf(Slice(50,50)));
    // Now we have aliases for two slices into the Vector

Element-by-element arithmetic and logical operations are available (in aips/ArrayMath.h and aips/ArrayLogical.h) as well as dot and cross products (in aips/MatrixMath.h).

A Vector can be constructed from an STL vector. The reverse operation (Array::tovector()) can construct an STL vector from any Array.
Tip: To create any other STL container from an Array (or the reverse), always create from/to a vector, and use the range constructor to create from/to others (like set, list, deque);

As with the Arrays, if the preprocessor symbol AIPS_DEBUG is defined at compile time invariants will be checked on entry to most member functions. Additionally, if AIPS_ARRAY_INDEX_CHECK is defined index operations will be bounds-checked. Neither of these should be defined for production code.

Definition at line 95 of file Vector.h.


Constructor & Destructor Documentation

template<class T>
casa::Vector< T >::Vector ( )

A zero-length Vector.

template<class T>
casa::Vector< T >::Vector ( uInt  Length) [explicit]

A Vector with a defined length and origin of zero.

template<class T>
casa::Vector< T >::Vector ( const IPosition Length) [explicit]
template<class T>
casa::Vector< T >::Vector ( uInt  Length,
const T &  initialValue 
)

A Vector with a defined length and origin of zero.

Fill it with the initial value.

template<class T>
casa::Vector< T >::Vector ( const IPosition Length,
const T &  initialValue 
)
template<class T>
casa::Vector< T >::Vector ( const Block< T > &  other,
Int  nr 
)

Create a Vector from the given Block "other." Make it length "nr" and copy over that many elements.

template<class T>
casa::Vector< T >::Vector ( const Block< T > &  other) [explicit]

Create a Vector of lenght other.nelements() and copy over its values.

template<class T>
casa::Vector< T >::Vector ( const Vector< T > &  other)

Create a reference to other.

template<class T>
casa::Vector< T >::Vector ( const Array< T > &  other)

Create a reference to the other array.

It is always possible if the array has zero or one axes. If it has > 1 axes, it is only possible if the array has at most one axis with length > 1. In that case the degenerated axes are removed.

template<class T>
casa::Vector< T >::Vector ( const IPosition shape,
T *  storage,
StorageInitPolicy  policy = COPY 
)

Create an Vector of a given shape from a pointer.

template<class T>
casa::Vector< T >::Vector ( const IPosition shape,
const T *  storage 
)

Create an Vector of a given shape from a pointer.

Because the pointer is const, a copy is always made.

template<class T>
template<class U >
casa::Vector< T >::Vector ( const vector< T, U > &  other)

Create a Vector from an STL vector (see tovector() in Array for the reverse operation).


Tip: Both this constructor and the tovector() are defined in Vector2;cc; In case of DIY template instantiation the appropriate templates are instantiated using the macro AIPS_VECTOR2_AUX_TEMPLATES(X) defined in Vector2;cc (X is the template argument needed);

template<class T>
template<class U >
casa::Vector< T >::Vector ( const std::set< U > &  other)
template<class T>
virtual casa::Vector< T >::~Vector ( ) [virtual]

Define a destructor, otherwise the compiler makes a static one.


Member Function Documentation

template<class T>
virtual void casa::Vector< T >::assign ( const Array< T > &  other) [virtual]
template<class T>
virtual void casa::Vector< T >::doNonDegenerate ( const Array< T > &  other,
const IPosition ignoreAxes 
) [protected, virtual]

Remove the degenerate axes from other and store result in this vector.

An exception is thrown if removing degenerate axes does not result in a vector.

Reimplemented from casa::Array< T >.

template<class T>
void casa::Vector< T >::initVector ( const Block< T > &  ,
Int  nr 
) [private]

Helper functions for constructors.

template<class T>
virtual Bool casa::Vector< T >::ok ( ) const [virtual]

Verify that dimensionality is 1 and then call Array<T>::ok()

Reimplemented from casa::Array< T >.

template<class T>
T& casa::Vector< T >::operator() ( const IPosition ) [inline]

Access a single element of the array.

This is relatively expensive. Extensive indexing should be done through one of the Array specializations (Vector, Matrix, Cube). If AIPS_DEBUG is defined, index checking will be performed.

Reimplemented from casa::Array< T >.

Definition at line 204 of file Vector.h.

Referenced by casa::Vector< ArgType >::operator()().

template<class T>
const T& casa::Vector< T >::operator() ( const IPosition i) const [inline]

Reimplemented from casa::Array< T >.

Definition at line 206 of file Vector.h.

template<class T>
T& casa::Vector< T >::operator() ( uInt  index) [inline]

Definition at line 208 of file Vector.h.

template<class T>
const T& casa::Vector< T >::operator() ( uInt  index) const [inline]

Definition at line 216 of file Vector.h.

template<class T>
Vector<T> casa::Vector< T >::operator() ( const Slice slice)

Take a slice of this vector.

Slices are always indexed starting at zero. This uses reference semantics, i.e. changing a value in the slice changes the original.

        Vector<Double> vd(100);
        //..\.
        vd(Slice(0,10)) = -1.0; // First 10 elements of vd set to -1
template<class T>
const Vector<T> casa::Vector< T >::operator() ( const Slice slice) const
template<class T>
Array<T> casa::Vector< T >::operator() ( const IPosition blc,
const IPosition trc,
const IPosition incr 
) [inline]

Slice using IPositions.

Required to be defined, otherwise the base class versions are hidden.

Reimplemented from casa::Array< T >.

Definition at line 241 of file Vector.h.

template<class T>
const Array<T> casa::Vector< T >::operator() ( const IPosition blc,
const IPosition trc,
const IPosition incr 
) const [inline]

Reimplemented from casa::Array< T >.

Definition at line 244 of file Vector.h.

template<class T>
Array<T> casa::Vector< T >::operator() ( const IPosition start,
const IPosition end 
) [inline]

Get a reference to an array section extending from start to end (inclusive).

Reimplemented from casa::Array< T >.

Definition at line 247 of file Vector.h.

template<class T>
const Array<T> casa::Vector< T >::operator() ( const IPosition blc,
const IPosition trc 
) const [inline]

Reimplemented from casa::Array< T >.

Definition at line 249 of file Vector.h.

template<class T>
Array<T> casa::Vector< T >::operator() ( const Slicer ) [inline]

Get a reference to an array section using a Slicer.

Reimplemented from casa::Array< T >.

Definition at line 251 of file Vector.h.

template<class T>
const Array<T> casa::Vector< T >::operator() ( const Slicer slicer) const [inline]

Reimplemented from casa::Array< T >.

Definition at line 253 of file Vector.h.

template<class T>
MaskedArray<T> casa::Vector< T >::operator() ( const LogicalArray &  mask) const [inline]

The array is masked by the input LogicalArray.

This mask must conform to the array.

Return a MaskedArray.

Reimplemented from casa::Array< T >.

Definition at line 262 of file Vector.h.

template<class T>
MaskedArray<T> casa::Vector< T >::operator() ( const LogicalArray &  mask) [inline]

Return a MaskedArray.

Reimplemented from casa::Array< T >.

Definition at line 266 of file Vector.h.

template<class T>
MaskedArray<T> casa::Vector< T >::operator() ( const MaskedLogicalArray &  mask) const [inline]

The array is masked by the input MaskedLogicalArray.

The mask is effectively the AND of the internal LogicalArray and the internal mask of the MaskedLogicalArray. The MaskedLogicalArray must conform to the array.

Return a MaskedArray.

Reimplemented from casa::Array< T >.

Definition at line 279 of file Vector.h.

template<class T>
MaskedArray<T> casa::Vector< T >::operator() ( const MaskedLogicalArray &  mask) [inline]

Return a MaskedArray.

Reimplemented from casa::Array< T >.

Definition at line 283 of file Vector.h.

template<class T>
Vector<T>& casa::Vector< T >::operator= ( const Vector< T > &  other)

Assign to this Vector.

If this Vector is zero-length, then resize to be the same size as other. Otherwise this and other have to be conformant (same size).
Note that the assign function can be used to assign a non-conforming vector.

Referenced by casa::Vector< ArgType >::operator=().

template<class T>
virtual Array<T>& casa::Vector< T >::operator= ( const Array< T > &  other) [virtual]

Other must be a 1-dimensional array.

Reimplemented from casa::Array< T >.

template<class T>
Array<T>& casa::Vector< T >::operator= ( const T &  val) [inline]

Set every element of this Vector to Val.

Reimplemented from casa::Array< T >.

Definition at line 184 of file Vector.h.

template<class T>
Vector<T>& casa::Vector< T >::operator= ( const MaskedArray< T > &  marray) [inline]

Copy to this those values in marray whose corresponding elements in marray's mask are True.

Reimplemented from casa::Array< T >.

Definition at line 189 of file Vector.h.

template<class T>
T& casa::Vector< T >::operator[] ( uInt  index) [inline]

Single-pixel addressing.

If AIPS_ARRAY_INDEX_CHECK is defined, bounds checking is performed (not for [])..

Definition at line 200 of file Vector.h.

template<class T>
const T& casa::Vector< T >::operator[] ( uInt  i) const [inline]

Get the subset given by the i-th value of the last axis.

So for a cube it returns the i-th xy plane. For a Matrix it returns the i-th row. The returned array references the original array data; its dimensionality is one less. For a 1-dim array it still returns a 1-dim array.
Note: This function should not be used in tight loops as it is (much) slower than iterating using begin() and end(), ArrayIter, or ArrayAccessor;

Reimplemented from casa::Array< T >.

Definition at line 202 of file Vector.h.

template<class T>
virtual void casa::Vector< T >::reference ( const Array< T > &  other) [virtual]

Create a reference to "other", which must be of dimension one.

Reimplemented from casa::Array< T >.

Referenced by casa::VBStore::reference(), casa::LFBase::setBaselineFlag(), casa::VisibilityResampler::setMaps(), and casa::VisibilityResampler::setParams().

template<class T>
void casa::Vector< T >::resize ( uInt  len,
Bool  copyValues = False 
) [inline]
template<class T>
virtual void casa::Vector< T >::resize ( const IPosition len,
Bool  copyValues = False 
) [virtual]

Reimplemented from casa::Array< T >.

template<class T>
virtual void casa::Vector< T >::resize ( ) [virtual]

Make this array a different shape.

If copyValues==True the old values are copied over to the new array. Copying is done on a per axis basis, thus a subsection with the minimum of the old and new shape is copied.
Resize without argument is equal to resize(IPosition()).
It is important to note that if multiple Array objects reference the same data storage, this Array object still references the same data storage as the other Array objects if the shape does not change. Otherwise this Array object references newly allocated storage, while the other Array objects still reference the existing data storage.
If you want to be sure that the data storage of this Array object is not referenced by other Array objects, the function unique should be called first.

Reimplemented from casa::Array< T >.

template<class T>
void casa::Vector< T >::shape ( Int Shape) const [inline]
template<class T>
const IPosition& casa::Vector< T >::shape ( ) const [inline]

The length of each axis.

Reimplemented from casa::ArrayBase.

Definition at line 293 of file Vector.h.

template<class T>
virtual void casa::Vector< T >::takeStorage ( const IPosition shape,
T *  storage,
StorageInitPolicy  policy = COPY 
) [virtual]

Replace the data values with those in the pointer storage.

The results are undefined is storage does not point at nelements() or more data elements. After takeStorage() is called, unique() is True.

Reimplemented from casa::Array< T >.

template<class T>
virtual void casa::Vector< T >::takeStorage ( const IPosition shape,
const T *  storage 
) [virtual]

Since the pointer is const, a copy is always taken.

Reimplemented from casa::Array< T >.

template<class T>
void casa::Vector< T >::toBlock ( Block< T > &  other) const

Convert a Vector to a Block, resizing the block and copying values.

This is done this way to avoid having the simpler Block class containing dependencies on the Vector class.


The documentation for this class was generated from the following file: