casa
$Rev:20696$
|
00001 //# Cleaner.h: this defines Cleaner a class for doing convolution 00002 //# Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003 00003 //# Associated Universities, Inc. Washington DC, USA. 00004 //# 00005 //# This library is free software; you can redistribute it and/or modify it 00006 //# under the terms of the GNU Library General Public License as published by 00007 //# the Free Software Foundation; either version 2 of the License, or (at your 00008 //# option) any later version. 00009 //# 00010 //# This library is distributed in the hope that it will be useful, but WITHOUT 00011 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00012 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 00013 //# License for more details. 00014 //# 00015 //# You should have received a copy of the GNU Library General Public License 00016 //# along with this library; if not, write to the Free Software Foundation, 00017 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 00018 //# 00019 //# Correspondence concerning AIPS++ should be addressed as follows: 00020 //# Internet email: aips2-request@nrao.edu. 00021 //# Postal address: AIPS++ Project Office 00022 //# National Radio Astronomy Observatory 00023 //# 520 Edgemont Road 00024 //# Charlottesville, VA 22903-2475 USA 00025 //# 00026 //# 00027 //# $Id: LatticeCleaner.h 20739 2009-09-29 01:15:15Z Malte.Marquarding $ 00028 00029 #ifndef SYNTHESIS_MATRIXCLEANER_H 00030 #define SYNTHESIS_MATRIXCLEANER_H 00031 00032 //# Includes 00033 #include <casa/aips.h> 00034 #include <casa/Quanta/Quantum.h> 00035 #include <lattices/Lattices/TempLattice.h> 00036 #include <casa/Arrays/IPosition.h> 00037 #include <casa/Arrays/Vector.h> 00038 #include <casa/Containers/Block.h> 00039 #include <lattices/Lattices/LatticeCleaner.h> 00040 00041 namespace casa { //# NAMESPACE CASA - BEGIN 00042 00043 //# Forward Declarations 00044 template <class T> class Matrix; 00045 00046 // <summary>A copy of LatticeCleaner but just using 2-D matrices</summary> 00047 // <synopsis> It is a mimic of the LatticeCleaner class but avoid a lot of 00048 // of the lattice to array and back copies and uses openmp in the obvious places 00049 // </synopsis> 00050 00051 // <summary>A class for doing multi-dimensional cleaning</summary> 00052 00053 // <use visibility=export> 00054 00055 // <reviewed reviewer="" date="yyyy/mm/dd" tests="tLatticeCleaner"> 00056 // </reviewed> 00057 00058 // <prerequisite> 00059 // <li> The mathematical concept of deconvolution 00060 // </prerequisite> 00061 // 00062 // <etymology> 00063 00064 // The MatrixCleaner class will deconvolve 2-D arrays of floats. 00065 00066 // </etymology> 00067 // 00068 // <synopsis> 00069 // This class will perform various types of Clean deconvolution 00070 // on Lattices. 00071 // 00072 // </synopsis> 00073 // 00074 // <example> 00075 // <srcblock> 00076 // </srcblock> 00077 // </example> 00078 // 00079 // <motivation> 00080 // </motivation> 00081 // 00082 // <thrown> 00083 // <li> AipsError: if psf has more dimensions than the model. 00084 // </thrown> 00085 // 00086 // <todo asof="yyyy/mm/dd"> 00087 // </todo> 00088 00089 class MatrixCleaner 00090 { 00091 public: 00092 00093 // Create a cleaner : default constructor 00094 MatrixCleaner(); 00095 00096 // Create a cleaner for a specific dirty image and PSF 00097 MatrixCleaner(const Matrix<Float> & psf, const Matrix<Float> & dirty); 00098 00099 // The copy constructor uses reference semantics 00100 MatrixCleaner(const MatrixCleaner& other); 00101 00102 // The assignment operator also uses reference semantics 00103 MatrixCleaner & operator=(const MatrixCleaner & other); 00104 00105 // The destructor does nothing special. 00106 ~MatrixCleaner(); 00107 00108 //just define the scales...nothing else is done 00109 //the user will need to call setPsf+makePsfScales+setDirty+makeDirtyScales 00110 //to be in a good state to clean. 00111 void defineScales(const Vector<Float>& scales); 00112 00113 //Set the dirty image without calculating convolutions.. 00114 //can be done by calling makeDirtyScales or setscales if one want to redo the 00115 //psfscales too. 00116 void setDirty(const Matrix<Float>& dirty); 00117 //Calculate the convolutions for the dirt 00118 //Obviously the 00119 void makeDirtyScales(); 00120 // Update the dirty image only (equiv of setDirty + makeDirtyScales) 00121 void update(const Matrix<Float> & dirty); 00122 00123 //change the psf 00124 //don't forget to redo the setscales or run makePsfScales, 00125 //followed by makeDirtyScales 00126 void setPsf(const Matrix<Float>& psf); 00127 //calculate the convolutions of the psf 00128 void makePsfScales(); 00129 00130 // Set a number of scale sizes. The units of the scale are pixels. 00131 // The 2 functions below assume you have the dirty image and the psf set 00132 // the convolutions are calculated automatically and the masks ones too 00133 // if it is set ....kept so as to be compatible function wise with LatticeCleaner 00134 Bool setscales(const Int nscales, const Float scaleInc=1.0); 00135 00136 // Set a specific set of scales 00137 Bool setscales(const Vector<Float> & scales); 00138 00139 00140 00141 // Set up control parameters 00142 // cleanType - type of the cleaning algorithm to use (HOGBOM, MULTISCALE) 00143 // niter - number of iterations 00144 // gain - loop gain used in cleaning (a fraction of the maximum 00145 // subtracted at every iteration) 00146 // aThreshold - absolute threshold to stop iterations 00147 // fThreshold - fractional threshold (i.e. given w.r.t. maximum residual) 00148 // to stop iterations. This parameter is specified as 00149 // Quantity so it can be given in per cents. 00150 // choose - unused at the moment, specify False. Original meaning is 00151 // to allow interactive decision on whether to continue iterations. 00152 // This method always returns True. 00153 Bool setcontrol(CleanEnums::CleanType cleanType, const Int niter, 00154 const Float gain, const Quantity& aThreshold, 00155 const Quantity& fThreshold); 00156 00157 // This version of the method disables stopping on fractional threshold 00158 Bool setcontrol(CleanEnums::CleanType cleanType, const Int niter, 00159 const Float gain, const Quantity& threshold); 00160 00161 // return how many iterations we did do 00162 Int iteration() const { return itsIteration; } 00163 Int numberIterations() const { return itsIteration; } 00164 00165 // what iteration number to start on 00166 void startingIteration(const Int starting = 0) {itsStartingIter = starting; } 00167 00168 //Total flux accumulated so far 00169 Float totalFlux() const {return itsTotalFlux;} 00170 00171 00172 // Clean an image. 00173 //return value gives you a hint of what's happening 00174 // 1 = converged 00175 // 0 = not converged but behaving normally 00176 // -1 = not converged and stopped on cleaning consecutive smallest scale 00177 // -2 = not converged and either large scale hit negative or diverging 00178 // -3 = clean is diverging rather than converging 00179 Int clean(Matrix<Float> & model, Bool doPlotProgress=False); 00180 00181 // Set the mask 00182 // mask - input mask lattice 00183 // maskThreshold - if positive, the value is treated as a threshold value to determine 00184 // whether a pixel is good (mask value is greater than the threshold) or has to be 00185 // masked (mask value is below the threshold). Negative threshold switches mask clipping 00186 // off. The mask value is used to weight the flux during cleaning. This mode is used 00187 // to implement cleaning based on the signal-to-noise as opposed to the standard cleaning 00188 // based on the flux. The default threshold value is 0.9, which ensures the behavior of the 00189 // code is exactly the same as before this parameter has been introduced. 00190 void setMask(Matrix<Float> & mask, const Float& maskThreshold = 0.9); 00191 // Call the function below if the psf is changed ..no need to setMask again 00192 Bool makeScaleMasks(); 00193 00194 // remove the mask; 00195 // useful when keeping object and sending a new dirty image to clean 00196 // one can set another mask then 00197 void unsetMask(); 00198 00199 // Tell the algorithm to NOT clean just the inner quarter 00200 // (This is useful when multiscale clean is being used 00201 // inside a major cycle for MF or WF algorithms) 00202 // if True, the full image deconvolution will be attempted 00203 void ignoreCenterBox(Bool huh) { itsIgnoreCenterBox = huh; } 00204 00205 // Consider the case of a point source: 00206 // the flux on all scales is the same, and the first scale will be chosen. 00207 // Now, consider the case of a point source with a *little* bit of extended structure: 00208 // thats right, the largest scale will be chosen. In this case, we should provide some 00209 // bias towards the small scales, or against the large scales. We do this in 00210 // an ad hoc manner, multiplying the maxima found at each scale by 00211 // 1.0 - itsSmallScaleBias * itsScaleSizes(scale)/itsScaleSizes(nScalesToClean-1); 00212 // Typical bias values range from 0.2 to 1.0. 00213 void setSmallScaleBias(const Float x=0.5) { itsSmallScaleBias = x; } 00214 00215 // During early iterations of a cycled MS Clean in mosaicing, it common 00216 // to come across an ocsilatory pattern going between positive and 00217 // negative in the large scale. If this is set, we stop at the first 00218 // negative in the largest scale. 00219 void stopAtLargeScaleNegative() {itsStopAtLargeScaleNegative = True; } 00220 00221 // Some algorithms require that the cycles be terminated when the image 00222 // is dominated by point sources; if we get nStopPointMode of the 00223 // smallest scale components in a row, we terminate the cycles 00224 void stopPointMode(Int nStopPointMode) {itsStopPointMode = nStopPointMode; } 00225 00226 // After completion of cycle, querry this to find out if we stopped because 00227 // of stopPointMode 00228 Bool queryStopPointMode() const {return itsDidStopPointMode; } 00229 00230 // speedup() will speed the clean iteration by raising the 00231 // threshold. This may be required if the threshold is 00232 // accidentally set too low (ie, lower than can be achieved 00233 // given errors in the approximate PSF). 00234 // 00235 // threshold(iteration) = threshold(0) 00236 // * ( exp( (iteration - startingiteration)/Ndouble )/ 2.718 ) 00237 // If speedup() is NOT invoked, no effect on threshold 00238 void speedup(const Float Ndouble); 00239 00240 // Look at what WE think the residuals look like 00241 // Assumes the first scale is zero-sized 00242 Matrix<Float> residual() { return itsDirtyConvScales[0]; } 00243 00244 // Method to return threshold, including any speedup factors 00245 Float threshold() const; 00246 00247 // Method to return the strength optimum achieved at the last clean iteration 00248 // The output of this method makes sense only if it is called after clean 00249 Float strengthOptimum() const { return itsStrengthOptimum; } 00250 00251 // Helper function to optimize adding 00252 //static void addTo(Matrix<Float>& to, const Matrix<Float> & add); 00253 00254 protected: 00255 // Make sure that the peak of the Psf is within the image 00256 Bool validatePsf(const Matrix<Float> & psf); 00257 00258 // Make an array of the specified scale 00259 void makeScale(Matrix<Float>& scale, const Float& scaleSize); 00260 00261 // Make Spheroidal function for scale images 00262 Float spheroidal(Float nu); 00263 00264 // Find the Peak of the matrix 00265 static Bool findMaxAbs(const Matrix<Float>& lattice, 00266 Float& maxAbs, IPosition& posMax); 00267 00268 // Find the Peak of the lattice, applying a mask 00269 Bool findMaxAbsMask(const Matrix<Float>& lattice, const Matrix<Float>& mask, 00270 Float& maxAbs, IPosition& posMax); 00271 00272 // Helper function to reduce the box sizes until the have the same 00273 // size keeping the centers intact 00274 static void makeBoxesSameSize(IPosition& blc1, IPosition& trc1, 00275 IPosition &blc2, IPosition& trc2); 00276 00277 00278 CleanEnums::CleanType itsCleanType; 00279 Float itsGain; 00280 Int itsMaxNiter; // maximum possible number of iterations 00281 Quantum<Double> itsThreshold; 00282 CountedPtr<Matrix<Float> > itsMask; 00283 IPosition itsPositionPeakPsf; 00284 Float itsSmallScaleBias; 00285 Block<Matrix<Float> > itsScaleMasks; 00286 Block<Matrix<Complex> > itsScaleXfrs; 00287 Bool itsScalesValid; 00288 Int itsNscales; 00289 Float itsMaskThreshold; 00290 private: 00291 00292 //# The following functions are used in various places in the code and are 00293 //# documented in the .cc file. Static functions are used when the functions 00294 //# do not modify the object state. They ensure that implicit assumptions 00295 //# about the current state and implicit side-effects are not possible 00296 //# because all information must be supplied in the input arguments 00297 00298 00299 CountedPtr<Matrix<Float> > itsDirty; 00300 CountedPtr<Matrix<Complex> >itsXfr; 00301 00302 Vector<Float> itsScaleSizes; 00303 00304 Block<Matrix<Float> > itsScales; 00305 Block<Matrix<Float> > itsPsfConvScales; 00306 Block<Matrix<Float> > itsDirtyConvScales; 00307 00308 00309 Int itsIteration; // what iteration did we get to? 00310 Int itsStartingIter; // what iteration did we get to? 00311 Quantum<Double> itsFracThreshold; 00312 00313 Float itsMaximumResidual; 00314 Float itsStrengthOptimum; 00315 00316 00317 Vector<Float> itsTotalFluxScale; 00318 Float itsTotalFlux; 00319 00320 // Memory to be allocated per TempLattice 00321 Double itsMemoryMB; 00322 00323 // Let the user choose whether to stop 00324 Bool itsChoose; 00325 00326 // Threshold speedup factors: 00327 Bool itsDoSpeedup; // if false, threshold does not change with iteration 00328 Float itsNDouble; 00329 00330 //# Stop now? 00331 //#// Bool stopnow(); Removed on 8-Apr-2004 by GvD 00332 00333 // Calculate index into PsfConvScales 00334 Int index(const Int scale, const Int otherscale); 00335 00336 Bool destroyScales(); 00337 Bool destroyMasks(); 00338 00339 00340 00341 Bool itsIgnoreCenterBox; 00342 Bool itsStopAtLargeScaleNegative; 00343 Int itsStopPointMode; 00344 Bool itsDidStopPointMode; 00345 Bool itsJustStarting; 00346 00347 // threshold for masks. If negative, mask values are used as weights and no pixels are 00348 // discarded (although effectively they would be discarded if the mask value is 0.) 00349 00350 IPosition psfShape_p; 00351 Bool noClean_p; 00352 00353 }; 00354 00355 } //# NAMESPACE CASA - END 00356 00357 #endif