casa  $Rev:20696$
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Matrix.h
Go to the documentation of this file.
00001 //# Matrix.h: A 2-D Specialization of the Array Class
00002 //# Copyright (C) 1993,1994,1995,1996,1999,2000,2001,2003
00003 //# Associated Universities, Inc. Washington DC, USA.
00004 //#
00005 //# This library is free software; you can redistribute it and/or modify it
00006 //# under the terms of the GNU Library General Public License as published by
00007 //# the Free Software Foundation; either version 2 of the License, or (at your
00008 //# option) any later version.
00009 //#
00010 //# This library is distributed in the hope that it will be useful, but WITHOUT
00011 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00012 //# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
00013 //# License for more details.
00014 //#
00015 //# You should have received a copy of the GNU Library General Public License
00016 //# along with this library; if not, write to the Free Software Foundation,
00017 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
00018 //#
00019 //# Correspondence concerning AIPS++ should be addressed as follows:
00020 //#        Internet email: aips2-request@nrao.edu.
00021 //#        Postal address: AIPS++ Project Office
00022 //#                        National Radio Astronomy Observatory
00023 //#                        520 Edgemont Road
00024 //#                        Charlottesville, VA 22903-2475 USA
00025 //#
00026 //# $Id: Matrix.h 21130 2011-10-18 07:39:05Z gervandiepen $
00027 
00028 #ifndef CASA_MATRIX_H
00029 #define CASA_MATRIX_H
00030 
00031 
00032 //# Includes
00033 #include <casa/Arrays/Array.h>
00034 
00035 namespace casa { //#Begin casa namespace
00036 
00037 //# Forward Declarations
00038 template<class T> class Vector;
00039 
00040 
00041 // <summary> A 2-D Specialization of the Array class </summary>
00042 // <reviewed reviewer="UNKNOWN" date="before2004/08/25" tests="" demos="">
00043 // </reviewed>
00044 //
00045 // Matrix objects are two-dimensional specializations (e.g., more convenient
00046 // and efficient indexing) of the general Array class. You might also want
00047 // to look at the Array documentation to see inherited functionality. A
00048 // tutorial on using the array classes in general is available in the
00049 // "AIPS++ Programming Manual".
00050 //
00051 // Generally the member functions of Array are also available in
00052 // Matrix versions which take a pair of integers where the array 
00053 // needs an IPosition. Since the Matrix
00054 // is two-dimensional, the IPositions are overkill, although you may
00055 // use those versions if you want to.
00056 // <srcblock>
00057 // Matrix<Int> mi(100,100);  // Shape is 100x100
00058 // mi.resize(50,50);         // Shape now 50x50
00059 // </srcblock>
00060 //
00061 // Slices may be taken with the Slice class. To take a slice, one "indexes" 
00062 // with one Slice(start, length, inc) for each axis,
00063 // where end and inc are optional.
00064 // Additionally, there are row(), column() and diagonal()
00065 // member functions which return Vector's which refer to the storage back
00066 // in the Matrix:
00067 // <srcblock>
00068 // Matrix<Float> mf(100, 100);
00069 // mf.diagonal() = 1;
00070 // </srcblock>
00071 //
00072 // Correct indexing order of a matrix is:
00073 // <srcblock>
00074 // Matrix<Int> mi(n1,n2)                  // [nrow, ncolumn]
00075 // for (uInt j=0; j<mi.ncolumn(); j++) {
00076 //    for (uInt i=0; i<mi.nrow(); i++) {
00077 //       mi(i,j) = i*j;
00078 //    }      
00079 // }
00080 // </srcblock>
00081 //
00082 //
00083 // Element-by-element arithmetic and logical operations are available (in
00084 // aips/ArrayMath.h and aips/ArrayLogical.h). Other Matrix operations (e.g.
00085 // LU decomposition) are available, and more appear periodically.
00086 //
00087 // As with the Arrays, if the preprocessor symbol AIPS_DEBUG is
00088 // defined at compile time invariants will be checked on entry to most
00089 // member functions. Additionally, if AIPS_ARRAY_INDEX_CHECK is defined
00090 // index operations will be bounds-checked. Neither of these should
00091 // be defined for production code.
00092 
00093 template<class T> class Matrix : public Array<T>
00094 {
00095 public:
00096     // A Matrix of length zero in each dimension; zero origin.
00097     Matrix();
00098 
00099     // A Matrix with "l1" rows and "l2" columns.
00100     Matrix(uInt l1, uInt l2);
00101 
00102     // A Matrix with "l1" rows and "l2" columns.
00103     // Fill it with the initial value.
00104     Matrix(uInt l1, uInt l2, const T &initialValue);
00105 
00106     // A matrix of shape with shape "len".
00107     Matrix(const IPosition &len);
00108 
00109     // A matrix of shape with shape "len".
00110     // Fill it with the initial value.
00111     Matrix(const IPosition &len, const T &initialValue);
00112 
00113     // The copy constructor uses reference semantics.
00114     Matrix(const Matrix<T> &other);
00115 
00116     // Construct a Matrix by reference from "other". "other must have
00117     // ndim() of 2 or less.
00118     Matrix(const Array<T> &other);
00119 
00120     // Create an Matrix of a given shape from a pointer.
00121     Matrix(const IPosition &shape, T *storage, StorageInitPolicy policy = COPY);
00122     // Create an Matrix of a given shape from a pointer. Because the pointer
00123     // is const, a copy is always made.
00124     Matrix(const IPosition &shape, const T *storage);
00125 
00126     // Define a destructor, otherwise the (SUN) compiler makes a static one.
00127     virtual ~Matrix();
00128 
00129     // Assign the other array (which must be dimension 2) to this matrix.
00130     // If the shapes mismatch, this array is resized.
00131     virtual void assign (const Array<T>& other);
00132 
00133     // Make this matrix a reference to other. Other must be of dimensionality
00134     // 2 or less.
00135     virtual void reference(const Array<T> &other);
00136 
00137     // Resize to the given shape (must be 2-dimensional).
00138     // Resize without argument is equal to resize(0,0).
00139     // <group>
00140     void resize(uInt nx, uInt ny, Bool copyValues=False);
00141     virtual void resize();
00142     virtual void resize(const IPosition &newShape, Bool copyValues=False);
00143     // </group>
00144 
00145     // Copy the values from other to this Matrix. If this matrix has zero
00146     // elements then it will resize to be the same shape as other; otherwise
00147     // other must conform to this.
00148     // Note that the assign function can be used to assign a
00149     // non-conforming matrix.
00150     // <group>
00151     Matrix<T> &operator=(const Matrix<T> &other);
00152     virtual Array<T> &operator=(const Array<T> &other);
00153     // </group>
00154 
00155     // Copy val into every element of this Matrix; i.e. behaves as if
00156     // val were a constant conformant matrix.
00157     Array<T> &operator=(const T &val)
00158       { return Array<T>::operator=(val); }
00159 
00160     // Copy to this those values in marray whose corresponding elements
00161     // in marray's mask are True.
00162     Matrix<T> &operator= (const MaskedArray<T> &marray)
00163       { Array<T> (*this) = marray; return *this; }
00164 
00165 
00166     // Single-pixel addressing. If AIPS_ARRAY_INDEX_CHECK is defined,
00167     // bounds checking is performed.
00168     // <group>
00169     T &operator()(const IPosition &i)
00170       { return Array<T>::operator()(i); }
00171     const T &operator()(const IPosition &i) const 
00172       { return Array<T>::operator()(i); }
00173     T &operator()(uInt i1, uInt i2)
00174       {
00175 #if defined(AIPS_ARRAY_INDEX_CHECK)
00176         this->validateIndex(i1, i2);   // Throws an exception on failure
00177 #endif
00178         return this->contiguous_p ? this->begin_p[i1 + i2*yinc_p] :
00179                                     this->begin_p[i1*xinc_p + i2*yinc_p];
00180       }
00181 
00182     const T &operator()(uInt i1, uInt i2) const
00183       {
00184 #if defined(AIPS_ARRAY_INDEX_CHECK)
00185         this->validateIndex(i1, i2);   // Throws an exception on failure
00186 #endif
00187         return this->contiguous_p ? this->begin_p[i1 + i2*yinc_p] :
00188                                     this->begin_p[i1*xinc_p + i2*yinc_p];
00189       }
00190     // </group>
00191 
00192 
00193     // The array is masked by the input LogicalArray.
00194     // This mask must conform to the array.
00195     // <group>
00196 
00197     // Return a MaskedArray.
00198     MaskedArray<T> operator() (const LogicalArray &mask) const
00199       { return Array<T>::operator() (mask); }
00200 
00201     // Return a MaskedArray.
00202     MaskedArray<T> operator() (const LogicalArray &mask)
00203       { return Array<T>::operator() (mask); }
00204 
00205     // </group>
00206 
00207 
00208     // The array is masked by the input MaskedLogicalArray.
00209     // The mask is effectively the AND of the internal LogicalArray
00210     // and the internal mask of the MaskedLogicalArray.
00211     // The MaskedLogicalArray must conform to the array.
00212     // <group>
00213 
00214     // Return a MaskedArray.
00215     MaskedArray<T> operator() (const MaskedLogicalArray &mask) const
00216       { return Array<T>::operator() (mask); }
00217 
00218     // Return a MaskedArray.
00219     MaskedArray<T> operator() (const MaskedLogicalArray &mask)
00220       { return Array<T>::operator() (mask); }
00221 
00222     // </group>
00223 
00224 
00225     // Returns a reference to the i'th row.
00226     // <group>
00227     Vector<T> row(uInt i);
00228 #if defined (AIPS_IRIX)
00229     Vector<T> row(uInt i) const;
00230 #else
00231     const Vector<T> row(uInt i) const;
00232 #endif
00233     // </group>
00234 
00235     // Returns a reference to the j'th column
00236     // <group>
00237     Vector<T> column(uInt j);
00238 #if defined (AIPS_IRIX)
00239     Vector<T> column(uInt j) const;
00240 #else
00241     const Vector<T> column(uInt j) const;
00242 #endif
00243     // </group>
00244 
00245     // Returns a diagonal from the Matrix. The Matrix must be square.
00246     // <group>
00247     Vector<T> diagonal( )
00248       { return diagonal (0); }
00249 #if defined (AIPS_IRIX)
00250     Vector<T> diagonal( ) const
00251       { return diagonal (0); }
00252 #else
00253     const Vector<T> diagonal( ) const
00254       { return diagonal (0); }
00255 #endif
00256     // n==0 is the main diagonal. n>0 is above the main diagonal, n<0
00257     // is below it.
00258     Vector<T> diagonal(Int n);
00259 #if defined (AIPS_IRIX)
00260     Vector<T> diagonal(Int n) const;
00261 #else
00262     const Vector<T> diagonal(Int n) const;
00263 #endif
00264     // </group>
00265 
00266     // Take a slice of this matrix. Slices are always indexed starting
00267     // at zero. This uses reference semantics, i.e. changing a value
00268     // in the slice changes the original.
00269     // <srcblock>
00270     // Matrix<Double> vd(100,100);
00271     // //...
00272     // vd(Slice(0,10),Slice(10,10)) = -1.0; // 10x10 sub-matrix set to -1.0
00273     // </srcblock>
00274     // <group>
00275     Matrix<T> operator()(const Slice &sliceX, const Slice &sliceY);
00276     const Matrix<T> operator()(const Slice &sliceX, const Slice &sliceY) const;
00277     // </group>
00278 
00279     // Slice using IPositions. Required to be defined, otherwise the base
00280     // class versions are hidden.
00281     // <group>
00282     Array<T> operator()(const IPosition &blc, const IPosition &trc,
00283                         const IPosition &incr)
00284       { return Array<T>::operator()(blc,trc,incr); }
00285     const Array<T> operator()(const IPosition &blc, const IPosition &trc,
00286                               const IPosition &incr) const
00287       { return Array<T>::operator()(blc,trc,incr); }
00288     Array<T> operator()(const IPosition &blc, const IPosition &trc)
00289       { return Array<T>::operator()(blc,trc); }
00290     const Array<T> operator()(const IPosition &blc, const IPosition &trc) const
00291       { return Array<T>::operator()(blc,trc); }
00292     Array<T> operator()(const Slicer& slicer)
00293       { return Array<T>::operator()(slicer); }
00294     const Array<T> operator()(const Slicer& slicer) const
00295       { return Array<T>::operator()(slicer); }
00296     // </group>
00297 
00298     // The length of each axis of the Matrix.
00299     // <group>
00300     void shape(Int &s1, Int &s2) const
00301       { s1 = this->length_p(0); s2=this->length_p(1); }
00302     const IPosition &shape() const
00303       { return this->length_p; }
00304     // </group>
00305 
00306     // The number of rows in the Matrix, i.e. the length of the first axis.
00307     uInt nrow() const
00308       { return this->length_p(0); }
00309 
00310     // The number of columns in the Matrix, i.e. the length of the 2nd axis.
00311     uInt ncolumn() const
00312       { return this->length_p(1); }
00313 
00314     // Replace the data values with those in the pointer <src>storage</src>.
00315     // The results are undefined is storage does not point at nelements() or
00316     // more data elements. After takeStorage() is called, <src>unique()</src>
00317     // is True.
00318     // <group>
00319     virtual void takeStorage(const IPosition &shape, T *storage,
00320                              StorageInitPolicy policy = COPY);
00321     // Since the pointer is const, a copy is always taken.
00322     virtual void takeStorage(const IPosition &shape, const T *storage);
00323     // </group>
00324 
00325     // Checks that the Matrix is consistent (invariants check out).
00326     virtual Bool ok() const;
00327 
00328 protected:
00329     // Remove the degenerate axes from other and store result in this matrix.
00330     // An exception is thrown if removing degenerate axes does not result
00331     // in a matrix.
00332     virtual void doNonDegenerate(const Array<T> &other,
00333                                  const IPosition &ignoreAxes);
00334 
00335 private:
00336     // Cached constants to improve indexing.
00337     Int xinc_p, yinc_p;
00338 
00339     // Helper fn to calculate the indexing constants.
00340     void makeIndexingConstants();
00341 };
00342 
00343 } //#End casa namespace
00344 #ifndef CASACORE_NO_AUTO_TEMPLATES
00345 #include <casa/Arrays/Matrix.tcc>
00346 #endif //# CASACORE_NO_AUTO_TEMPLATES
00347 #endif