casa
$Rev:20696$
|
00001 //# NNLSMatrixSolver.h: the base class for NNLS solvers of AX=B 00002 //# Copyright (C) 1994,1995,1999 00003 //# Associated Universities, Inc. Washington DC, USA. 00004 //# 00005 //# This library is free software; you can redistribute it and/or modify it 00006 //# under the terms of the GNU Library General Public License as published by 00007 //# the Free Software Foundation; either version 2 of the License, or (at your 00008 //# option) any later version. 00009 //# 00010 //# This library is distributed in the hope that it will be useful, but WITHOUT 00011 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00012 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 00013 //# License for more details. 00014 //# 00015 //# You should have received a copy of the GNU Library General Public License 00016 //# along with this library; if not, write to the Free Software Foundation, 00017 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 00018 //# 00019 //# Correspondence concerning AIPS++ should be addressed as follows: 00020 //# Internet email: aips2-request@nrao.edu. 00021 //# Postal address: AIPS++ Project Office 00022 //# National Radio Astronomy Observatory 00023 //# 520 Edgemont Road 00024 //# Charlottesville, VA 22903-2475 USA 00025 //# 00026 //# $Id: NNLSMatrixSolver.h 19779 2006-12-12 23:20:42Z gvandiep $ 00027 00028 #ifndef SCIMATH_NNLSMATRIXSOLVER_H 00029 #define SCIMATH_NNLSMATRIXSOLVER_H 00030 00031 00032 #include <casa/aips.h> 00033 #include <scimath/Mathematics/MatrixSolver.h> 00034 00035 namespace casa { //# NAMESPACE CASA - BEGIN 00036 00037 //<summary> 00038 // NNLSMatrixSolver.h: the base class for NNLS solvers of linear equations AX=B 00039 //</summary> 00040 00041 // <use visibility=local> 00042 00043 // <reviewed reviewer="" date="",tests="" demos=""> 00044 // </reviewed> 00045 00046 // <prerequisite> 00047 // <li> Matrix, Vector 00048 // </prerequisite> 00049 // 00050 // <etymology> 00051 // NNLS stands for Projection Onto Convex Sets. The idea is very simple: to 00052 // find a solution to AX=B simply take the residual vector B-AX and operate 00053 // on it to keep only the bits that obey some constraint e.g. positivity. 00054 // Add this part to the current estimate of the solution vector and iterate. 00055 // Both CLEAN and Gerchberg-Saxon are NNLS algorithms. If the projection 00056 // Operators are convex then the process is guaranteed to converge (Youla, 1970). 00057 // </etymology> 00058 // 00059 // <synopsis> 00060 // NNLSMatrixSolver is a complete class. To use it, simply add Operators 00061 // <ol> 00062 // <li> I do not know how to do this yet but it should look something like 00063 // <src>NNLSMatrixSolver NNLS(amatrix, bvector);NNLS.addOperator(foo);</src> 00064 // </ol> 00065 // </synopsis> 00066 // 00067 // <todo asof=""> 00068 // <li> Add list of operators 00069 // </todo> 00070 00071 class NNLSMatrixSolver : public MatrixSolver { 00072 public: 00073 00074 // Default Constructor 00075 NNLSMatrixSolver(); 00076 00077 // Copy Constructor 00078 NNLSMatrixSolver(const NNLSMatrixSolver & other); 00079 00080 // Create a NNLSMatrixSolver from a matrix A and a Vector B 00081 // <note role=warning> A and B are accessed by reference, so don't 00082 // modify them during the lifetime of the NNLSMatrixSolver </note> 00083 NNLSMatrixSolver(const Matrix<FType> & A, const Vector<FType> & B); 00084 00085 // Destructor 00086 ~NNLSMatrixSolver(); 00087 00088 // Solve for the X vector. 00089 Bool solve(); 00090 00091 protected: 00092 00093 private: 00094 00095 }; 00096 00097 00098 } //# NAMESPACE CASA - END 00099 00100 #endif