casa
$Rev:20696$
|
00001 //# WOnlyProjectFT.h: Definition for WOnlyProjectFT 00002 //# Copyright (C) 1996,1997,1998,1999,2000,2002 00003 //# Associated Universities, Inc. Washington DC, USA. 00004 //# 00005 //# This library is free software; you can redistribute it and/or modify it 00006 //# under the terms of the GNU Library General Public License as published by 00007 //# the Free Software Foundation; either version 2 of the License, or (at your 00008 //# option) any later version. 00009 //# 00010 //# This library is distributed in the hope that it will be useful, but WITHOUT 00011 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00012 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 00013 //# License for more details. 00014 //# 00015 //# You should have received a copy of the GNU Library General Public License 00016 //# along with this library; if not, write to the Free Software Foundation, 00017 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 00018 //# 00019 //# Correspondence concerning AIPS++ should be adressed as follows: 00020 //# Internet email: aips2-request@nrao.edu. 00021 //# Postal address: AIPS++ Project Office 00022 //# National Radio Astronomy Observatory 00023 //# 520 Edgemont Road 00024 //# Charlottesville, VA 22903-2475 USA 00025 //# 00026 //# 00027 //# $Id$ 00028 00029 #ifndef SYNTHESIS_WONLYPROJECTFT_H 00030 #define SYNTHESIS_WONLYPROJECTFT_H 00031 00032 #include <synthesis/MeasurementComponents/VLACalcIlluminationConvFunc.h> 00033 #include <synthesis/MeasurementComponents/VLAIlluminationConvFunc.h> 00034 //#include <synthesis/TransformMachines/ConvolutionFunction.h> 00035 #include <synthesis/MeasurementComponents/EVLAConvFunc.h> 00036 #include <synthesis/MeasurementComponents/SolvableVisCal.h> 00037 #include <synthesis/TransformMachines/VPSkyJones.h> 00038 #include <synthesis/TransformMachines/FTMachine.h> 00039 //#include <synthesis/TransformMachines/CFCache.h> 00040 #include <synthesis/TransformMachines/Utils.h> 00041 00042 #include <scimath/Mathematics/FFTServer.h> 00043 #include <synthesis/MSVis/VisBuffer.h> 00044 00045 #include <casa/Containers/Block.h> 00046 #include <casa/Arrays/Array.h> 00047 #include <casa/Arrays/Vector.h> 00048 #include <casa/Arrays/Matrix.h> 00049 00050 #include <scimath/Mathematics/ConvolveGridder.h> 00051 #include <lattices/Lattices/LatticeCache.h> 00052 #include <lattices/Lattices/ArrayLattice.h> 00053 #include <ms/MeasurementSets/MSColumns.h> 00054 #include <measures/Measures/Measure.h> 00055 #include <measures/Measures/MDirection.h> 00056 #include <measures/Measures/MPosition.h> 00057 #include <images/Images/ImageInterface.h> 00058 #include <coordinates/Coordinates/DirectionCoordinate.h> 00059 00060 namespace casa { //# NAMESPACE CASA - BEGIN 00061 00062 // <summary> An FTMachine for Gridded Fourier transforms including effects of primary beam and pointing offsets and the w-term</summary> 00063 00064 // <use visibility=export> 00065 00066 // <reviewed reviewer="" date="" tests="" demos=""> 00067 00068 // <prerequisite> 00069 // <li> <linkto class=FTMachine>FTMachine</linkto> module 00070 // <li> <linkto class=SkyEquation>SkyEquation</linkto> module 00071 // <li> <linkto class=VisBuffer>VisBuffer</linkto> module 00072 // <li> <linto class=EPJones>EPJones</linkto> module 00073 // </prerequisite> 00074 // 00075 // <etymology> 00076 // FTMachine is a Machine for Fourier Transforms. Like 00077 // WProjectFT, WOnlyProjectFT does Grid-based Fourier transforms but 00078 // also includes the effects of primary beam and antenna pointing 00079 // offsets. 00080 // </etymology> 00081 // 00082 // <synopsis> 00083 // 00084 // The <linkto class=SkyEquation>SkyEquation</linkto> needs to be 00085 // able to perform Fourier transforms on visibility 00086 // data. WOnlyProjectFT allows efficient handling of direction 00087 // dependent effects due to the primary beam and antenna pointing 00088 // offsets using a <linkto class=VisBuffer>VisBuffer</linkto> which 00089 // encapsulates a chunk of visibility (typically all baselines for 00090 // one time) together with all the information needed for processing 00091 // (e.g. UVW coordinates). 00092 // 00093 // Using this FTMachine, errors due antenna pointing offsets can be 00094 // corrected during deconvolution. One form of antenna pointing 00095 // error which is known a-priori is the VLA polarization squint 00096 // (about 6% of the Primary beam width at any frequency). For 00097 // Stokes imaging, using this FTMachine, the VLA polarization squint 00098 // and beam polarization can also be corrected. Also since the 00099 // effects of antenna pointing errors is strongest in the range of 00100 // 1-2GHz band (where the sky is not quite empty while the beams are 00101 // not too large either), this FTMachine can also be setup to 00102 // correct for the w-term. 00103 // 00104 // Switches are provided in the get() method to compute the 00105 // derivatives with respect to the parameters of the primary beam 00106 // (only pointing offsets for now). This is used in the pointing 00107 // offset solver. 00108 // 00109 // See the documentation of other FTMachines for details about the 00110 // design of the FTMachines in general. 00111 // 00112 // </synopsis> 00113 // 00114 // <example> 00115 // See the example for <linkto class=SkyModel>SkyModel</linkto>. 00116 // </example> 00117 // 00118 // <motivation> 00119 // 00120 // Encapsulate the correction of direction dependent effects via 00121 // visibility plane convolutions with a potentially different 00122 // convolution function for each baseline. 00123 // 00124 // </motivation> 00125 // 00126 // <todo asof="2005/07/21"> 00127 // 00128 // <ul> Include the antenna based complex gain term as well since 00129 // that can interfere with the effects of pointing offsets. 00130 // 00131 // <ul> Factor out the actual convolution functions as a separate 00132 // class making FTMachines for various direction dependent effects 00133 // generic. 00134 // 00135 // </todo> 00136 00137 // class EPJones; 00138 class SolvableVisJones; 00139 class WOnlyProjectFT : public FTMachine { 00140 public: 00141 00142 // Constructor: cachesize is the size of the cache in words 00143 // (e.g. a few million is a good number), tilesize is the 00144 // size of the tile used in gridding (cannot be less than 00145 // 12, 16 works in most cases). 00146 // <group> 00147 WOnlyProjectFT(Int nFacets, Long cachesize, 00148 CountedPtr<CFCache>& cfcache, 00149 CountedPtr<ConvolutionFunction>& cf, 00150 CountedPtr<VisibilityResampler>& reSampler, 00151 Int tilesize=16, 00152 Float pbLimit=5e-2, 00153 Bool usezero=False); 00154 // </group> 00155 00156 // Construct from a Record containing the WOnlyProjectFT state 00157 WOnlyProjectFT(const RecordInterface& stateRec); 00158 00159 // Copy constructor 00160 WOnlyProjectFT(const WOnlyProjectFT &other); 00161 00162 // Assignment operator 00163 WOnlyProjectFT &operator=(const WOnlyProjectFT &other); 00164 00165 ~WOnlyProjectFT(); 00166 00167 virtual void initializeToVis(ImageInterface<Complex>& image, 00168 const VisBuffer& vb); 00169 // This version returns the gridded vis...should be used in conjunction 00170 // with the version of 'get' that needs the gridded visdata 00171 virtual void initializeToVis(ImageInterface<Complex>& image, 00172 const VisBuffer& vb, Array<Complex>& griddedVis, 00173 Vector<Double>& uvscale); 00174 00175 // Finalize transform to Visibility plane: flushes the image 00176 // cache and shows statistics if it is being used. 00177 virtual void finalizeToVis(); 00178 00179 // Initialize transform to Sky plane: initializes the image 00180 virtual void initializeToSky(ImageInterface<Complex>& image, Matrix<Float>& weight, 00181 const VisBuffer& vb); 00182 00183 // Finalize transform to Sky plane: flushes the image 00184 // cache and shows statistics if it is being used. DOES NOT 00185 // DO THE FINAL TRANSFORM! 00186 virtual void finalizeToSky(); 00187 00188 virtual void initVisBuffer(VisBuffer& vb, Type whichVBColumn); 00189 void initVisBuffer(VisBuffer& vb, Type whichVBColumn, Int row); 00190 00191 // Get actual coherence from grid by degridding 00192 void get(VisBuffer& vb, Int row=-1); 00193 00194 // Get the coherence from grid return it in the degrid 00195 // is used especially when scratch columns are not 00196 // present in ms. 00197 void get(VisBuffer& vb, Cube<Complex>& degrid, 00198 Array<Complex>& griddedVis, Vector<Double>& scale, 00199 Int row=-1); 00200 00201 00202 00203 // Put coherence to grid by gridding. 00204 void put(const VisBuffer&, TempImage<Complex>&, Vector<Double>&, int, 00205 UVWMachine*, Bool) 00206 { 00207 // throw(AipsError("WOnlyProjectFT::put is not implemented")); 00208 } 00209 void put(const VisBuffer& vb, Int row=-1, Bool dopsf=False, 00210 FTMachine::Type type=FTMachine::OBSERVED); 00211 00212 // Make the entire image 00213 void makeImage(FTMachine::Type type, 00214 VisSet& vs, 00215 ImageInterface<Complex>& image, 00216 Matrix<Float>& weight); 00217 00218 // Get the final image: do the Fourier transform and 00219 // grid-correct, then optionally normalize by the summed weights 00220 virtual ImageInterface<Complex>& getImage(Matrix<Float>&, Bool normalize=True); 00221 00222 // Save and restore the WOnlyProjectFT to and from a record 00223 Bool toRecord(RecordInterface& outRec, Bool withImage=False); 00224 Bool fromRecord(const RecordInterface& inRec); 00225 00226 // Can this FTMachine be represented by Fourier convolutions? 00227 Bool isFourier() {return True;} 00228 00229 // 00230 // Make a sensitivity image (sensitivityImage), given the gridded 00231 // weights (wtImage). These are related to each other by a 00232 // Fourier transform and normalization by the sum-of-weights 00233 // (sumWt) and normalization by the product of the 2D FFT size 00234 // along each axis. If doFFTNorm=False, normalization by the FFT 00235 // size is not done. If sumWt is not provided, normalization by 00236 // the sum of weights is also not done. 00237 // 00238 virtual void makeSensitivityImage(Lattice<Complex>& wtImage, 00239 ImageInterface<Float>& sensitivityImage, 00240 const Matrix<Float>& sumWt=Matrix<Float>(), 00241 const Bool& doFFTNorm=True) {}; 00242 virtual void makeSensitivityImage(const VisBuffer& vb, 00243 const ImageInterface<Complex>& imageTemplate, 00244 ImageInterface<Float>& sensitivityImage); 00245 // 00246 // Given the sky image (Fourier transform of the visibilities), 00247 // sum of weights and the sensitivity image, this method replaces 00248 // the skyImage with the normalized image of the sky. 00249 // 00250 virtual void normalizeImage(Lattice<Complex>& skyImage, 00251 const Matrix<Double>& sumOfWts, 00252 Lattice<Float>& sensitivityImage, 00253 Bool fftNorm=True); 00254 virtual void normalizeImage(Lattice<Complex>& skyImage, 00255 const Matrix<Double>& sumOfWts, 00256 Lattice<Float>& sensitivityImage, 00257 Lattice<Complex>& sensitivitySqImage, 00258 Bool fftNorm=True); 00259 00260 virtual ImageInterface<Float>& getSensitivityImage() {return *avgPB_p;} 00261 virtual Matrix<Double>& getSumOfWeights() {return sumWeight;}; 00262 00263 Vector<Int>& getPolMap() {return polMap;}; 00264 virtual String name(){ return "WOnlyProjectFT";}; 00265 virtual Bool verifyShapes(IPosition shape0, IPosition shape1); 00266 virtual void setMiscInfo(const Int qualifier){(void)qualifier;}; 00267 00268 protected: 00269 00270 Int nint(Double val) {return Int(floor(val+0.5));}; 00271 // Locate convolution functions on the disk 00272 // Int locateConvFunction(const Int Nw, const Float pa); 00273 // void cacheConvFunction(Int which, Array<Complex>& cf, CoordinateSystem& coord); 00274 // Find the convolution function 00275 void findConvFunction(const ImageInterface<Complex>& image, 00276 const VisBuffer& vb); 00277 00278 // Get the appropriate data pointer 00279 Array<Complex>* getDataPointer(const IPosition&, Bool); 00280 00281 void ok(); 00282 00283 void init(); 00284 // virtual void initPolInfo(const VisBuffer& vb); 00285 // Is this record on Grid? check both ends. This assumes that the 00286 // ends bracket the middle 00287 Bool recordOnGrid(const VisBuffer& vb, Int rownr) const; 00288 00289 // Padding in FFT 00290 Float padding_p; 00291 00292 Int nWPlanes_p; 00293 // Image cache 00294 LatticeCache<Complex> * imageCache; 00295 00296 // Sizes 00297 Long cachesize; 00298 Int tilesize; 00299 00300 // Gridder 00301 ConvolveGridder<Double, Complex>* gridder; 00302 00303 // Is this tiled? 00304 Bool isTiled; 00305 00306 // Array lattice 00307 CountedPtr<Lattice<Complex> > arrayLattice; 00308 00309 // Lattice. For non-tiled gridding, this will point to arrayLattice, 00310 // whereas for tiled gridding, this points to the image 00311 CountedPtr<Lattice<Complex> > lattice; 00312 00313 Float maxAbsData; 00314 00315 // Useful IPositions 00316 IPosition centerLoc, offsetLoc; 00317 00318 // Image Scaling and offset 00319 Vector<Double> uvScale, uvOffset; 00320 00321 // Array for non-tiled gridding 00322 Array<Complex> griddedData; 00323 00324 // DirectionCoordinate directionCoord; 00325 MDirection::Convert* pointingToImage; 00326 00327 // Grid/degrid zero spacing points? 00328 Bool usezero_p; 00329 00330 // CountedPtr<ConvolutionFunction> telescopeConvFunc_p; 00331 // CFStore cfs_p, cfwts_p; 00332 Array<Complex> convFunc_p, convWeights_p; 00333 CountedPtr<VisibilityResampler> reSampler_p; 00334 // 00335 // Vector to hold the support size info. for the convolution 00336 // functions pointed to by the elements of convFunctions_p. The 00337 // co-ordinates of this array are (W-term, Poln, PA). 00338 // 00339 Int convSize, convSampling, wConvSize, lastIndex_p; 00340 00341 // 00342 // No. of vis. polarization planes used in making the user defined 00343 // Stokes images 00344 // 00345 Int maxConvSupport; 00346 00347 Int Nant_p; 00348 Bool makingPSF; 00349 00350 virtual void runFortranGet(Matrix<Double>& uvw,Vector<Double>& dphase, 00351 Cube<Complex>& visdata, 00352 IPosition& s, 00353 //Cube<Complex>& gradVisAzData, 00354 //Cube<Complex>& gradVisElData, 00355 //IPosition& gradS, 00356 Int& Conj, 00357 Cube<Int>& flags,Vector<Int>& rowFlags, 00358 Int& rownr,Vector<Double>& actualOffset, 00359 Array<Complex>* dataPtr, 00360 Int& aNx, Int& aNy, Int& npol, Int& nchan, 00361 VisBuffer& vb,Int& Nant_p, Int& scanNo, 00362 Double& sigma, 00363 Array<Float>& raoffsets, 00364 Array<Float>& decoffsets, 00365 Double area, 00366 Int& doGrad,Int paIndex); 00367 virtual void runFortranPut(Matrix<Double>& uvw,Vector<Double>& dphase, 00368 const Complex& visdata_p, 00369 IPosition& s, 00370 //Cube<Complex>& gradVisAzData, 00371 //Cube<Complex>& gradVisElData, 00372 //IPosition& gradS, 00373 Int& Conj, 00374 Cube<Int>& flags,Vector<Int>& rowFlags, 00375 const Matrix<Float>& weight, 00376 Int& rownr,Vector<Double>& actualOffset, 00377 Array<Complex>& dataPtr, 00378 Int& aNx, Int& aNy, Int& npol, Int& nchan, 00379 const VisBuffer& vb,Int& Nant_p, Int& scanNo, 00380 Double& sigma, 00381 Array<Float>& raoffsets, 00382 Array<Float>& decoffsets, 00383 Matrix<Double>& sumWeight, 00384 Double& area, 00385 Int& doGrad, 00386 Int& doPSF,Int paIndex); 00387 void runFortranGetGrad(Matrix<Double>& uvw,Vector<Double>& dphase, 00388 Cube<Complex>& visdata, 00389 IPosition& s, 00390 Cube<Complex>& gradVisAzData, 00391 Cube<Complex>& gradVisElData, 00392 // IPosition& gradS, 00393 Int& Conj, 00394 Cube<Int>& flags,Vector<Int>& rowFlags, 00395 Int& rownr,Vector<Double>& actualOffset, 00396 Array<Complex>* dataPtr, 00397 Int& aNx, Int& aNy, Int& npol, Int& nchan, 00398 VisBuffer& vb,Int& Nant_p, Int& scanNo, 00399 Double& sigma, 00400 Array<Float>& l_off, 00401 Array<Float>& m_off, 00402 Double area, 00403 Int& doGrad, 00404 Int paIndex); 00405 }; 00406 } //# NAMESPACE CASA - END 00407 // void makeAntiAliasingOp(Vector<Complex>& val, const Int len, const Double HPBW); 00408 // void makeAntiAliasingCorrection(Vector<Complex>& correction, 00409 // const Vector<Complex>& op, 00410 // const Int nx); 00411 // void applyAntiAliasingOp(ImageInterface<Complex>& cf, 00412 // Vector<IPosition>& offset, 00413 // Double HPBW, 00414 // Int op=0, 00415 // Bool Square=False); 00416 // void applyAntiAliasingOp(ImageInterface<Float>& cf, 00417 // Vector<IPosition>& offset, 00418 // Double HPBW, 00419 // Int op=0, 00420 // Bool Square=False); 00421 // void correctAntiAliasing(Lattice<Complex>& cf); 00422 00423 #endif