PBMath2DImage.h
Classes
- PBMath2DImage -- 2-D Image Primary Beam Model (full description)
Interface
- Public Members
- PBMath2DImage()
- PBMath2DImage(ImageInterface<Float>& reJonesImage)
- PBMath2DImage(ImageInterface<Float>& reJonesImage, ImageInterface<Float>& imJonesImage)
- PBMath2DImage& operator=(const PBMath2DImage& other)
- ~PBMath2DImage()
- PBMathInterface::PBClass whichPBClass()
- void summary(Int nValues=0)
- Protected Members
- ImageInterface<Float>& apply(const ImageInterface<Float>& in, ImageInterface<Float>& out, const MDirection& sp, const Quantity parAngle, const BeamSquint::SquintType doSquint, Float cutoff)
- Private Members
- void checkJonesCongruent(ImageInterface<Float>& reJones, ImageInterface<Float>& imJones)
- void checkImageCongruent(ImageInterface<Float>& image)
- void updateJones(const CoordinateSystem& coords, const IPosition& shape, const MDirection& pc, const Quantity& paAngle)
- void applyJones(const Array<Float>* reJones, const Array<Float>* imJones, const Array<Float>& in, Array<Float>& out, Vector<Int>& polmap, Float cutoff, Bool circular=True)
Prerequisite
Etymology
PBMath2DImage: derived from PBMath2D, implements a numeric PB and VP
Synopsis
See PBMath2D for a general synopsis of the 2D PB types.
The user supplies a vector which is a numerical representation
of a voltage [attern (hey, if you have a PB, just take the square
root, and look out for sidelobes which could be negative).
The first element in the vector needs to be 1.0, the center of the
voltage pattern. The last element of the vector is the value of the
VP at the maximumRadius. The maximumRadius and the reference frequency at
which the tabulated VP is intended are also required for construction.
The PBMath2DImage constructor proceeds by performing SINC interpolation
on the input vector to generate the highly oversampled lookup vector.
Example
Vector<Float> vp(10);
vp(0) = 1.0f;
vp(1) = 0.932f;
vp(2) = 0.7462f;
vp(3) = 0.4914f;
vp(4) = 0.2308f;
vp(5) = 0.02183f; // first null
vp(6) = -0.1005f;
vp(7) = -0.1318f;
vp(8) = -0.09458f;
vp(9) = -0.0269f;
Quantity maxRad(1.032,"deg");
Quantity refFreq(1.414, "GHz");
PBMath2DImage numPB (vp, maxRad, refFreq);
numPB.applyPB( im1, im2, pointingDir);
Motivation
All of the 2-D PB types have everything in common except for the
details of their parameterization. This lightweight class
deals with those differences: construction, filling the PBArray
from construction parameters, and flushing to disk.
The Image type is very handy: someone can take a sample
illumination pattern, FT, and take a slice of the resulting voltage
pattern and construct a VP from that slice.
To Do
- constructor from a MS beam subtable
- flush to MS beam subtable
Member Description
PBMath2DImage(ImageInterface<Float>& reJonesImage)
Instantiation from arguments; only an image is needed
PBMath2DImage(ImageInterface<Float>& reJonesImage, ImageInterface<Float>& imJonesImage)
PBMath2DImage& operator=(const PBMath2DImage& other)
Copy constructor
PBMath2DGImage(const PBMath2DImage& other);
Assignment operator, by reference
destructor
PBMathInterface::PBClass whichPBClass()
Get the type of PB this is
void summary(Int nValues=0)
Summarize the construction data for this primary beam
ImageInterface<Float>& apply(const ImageInterface<Float>& in, ImageInterface<Float>& out, const MDirection& sp, const Quantity parAngle, const BeamSquint::SquintType doSquint, Float cutoff)
void checkJonesCongruent(ImageInterface<Float>& reJones, ImageInterface<Float>& imJones)
Check for congruency
Update the Jones Matrix
void applyJones(const Array<Float>* reJones, const Array<Float>* imJones, const Array<Float>& in, Array<Float>& out, Vector<Int>& polmap, Float cutoff, Bool circular=True)
Float to Float