casa  $Rev:20696$
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Public Member Functions | Static Public Member Functions | Protected Member Functions | Private Attributes
casa::LELInterface< T > Class Template Reference

This base class provides the interface for Lattice expressions. More...

#include <LELInterface.h>

Inheritance diagram for casa::LELInterface< T >:
casa::LELBinary< T > casa::LELCondition< T > casa::LELConvert< T, F > casa::LELFunction1D< T > casa::LELFunctionND< T > casa::LELFunctionReal1D< T > casa::LELLattice< T > casa::LELSpectralIndex< T > casa::LELUnary< T > casa::LELUnaryConst< T >

List of all members.

Public Member Functions

virtual ~LELInterface ()
 Virtual destructor.
virtual void eval (LELArray< T > &result, const Slicer &section) const =0
 Evaluate the expression and fill the result array.
virtual void evalRef (LELArrayRef< T > &result, const Slicer &section) const
virtual LELScalar< T > getScalar () const =0
 Get the result of a scalar subexpression.
LELArray< T > getArray () const
 Get the result of an array subexpression.
virtual Bool prepareScalarExpr ()=0
 Do further preparations (e.g.
Bool isScalar () const
 Is the result of evaluating this expression a scalar ?
const IPositionshape () const
 Get the shape of the expression result.
const LELAttributegetAttribute () const
 Get expression attribute.
virtual String className () const =0
 Get class name.
virtual Bool lock (FileLocker::LockType, uInt nattempts)
 Handle locking/syncing of the parts of a lattice expression.
virtual void unlock ()
virtual Bool hasLock (FileLocker::LockType) const
virtual void resync ()

Static Public Member Functions

static Bool replaceScalarExpr (CountedPtr< LELInterface< T > > &expr)
 If the given expression is a valid scalar, replace it by its result.

Protected Member Functions

void setAttr (const LELAttribute &attrib)
 
   

Private Attributes

LELAttribute attr_p

Detailed Description

template<class T>
class casa::LELInterface< T >

This base class provides the interface for Lattice expressions.

Intended use:

Internal

 <h3>Review Status</h3><dl><dt>Date Reviewed:<dd>yyyy/mm/dd</dl> 

Prerequisite

Etymology

The name means "Lattice Expression Language Interface". This class provides the declaration for the interface for classes that are to provide Lattice expression computational functionality

Synopsis

This class is part of the Letter/envelope scheme which enables the C++ programmer to write mathematical expressions involving Lattices. The envelope class LatticeExpr invokes the bridge class LatticeExprNode. LatticeExprNode activates the letter classes which provide the real functionality.

A description of the implementation details of these classes can be found in Note 216

This class, LELInterface, is the abstract base class for all of the letter classes. Its purpose is to declare the interface inherited by all of its derived classes which are used polymorphically. The derived classes offer the functionality to create and evaluate the expression tree that results from the compiler parsing the expression. For example, these derived classes are activated by LatticeExprNode to handle operations like reading pixels from a Lattice, applying binary operations to Lattices, applying mathematical functions to Lattices and so on.

The heart of the interface is in the functions eval and getScalar. These recursively evaluate the result of the current expression when the result is either an array or a scalar, respectively. The need for recursion can be understood with a simple example.

Consider an expression summing two Lattices such as "2*(b+c)". The expression tree consists of nodes (leaves) that 1) get Lattice pixels from the Lattice (expressions "b" and "c"), 2) add the pixel values of the Lattices together (operator "+"), and 3) multiply a Lattice by a scalar (operator "*"). At the top of the tree, we have a scalar (2.0) and a Lattice (the result of "b+c"). The top-of-the-tree expression has to multiply them together. That's what the eval function for the "*" operation needs to do. The key is that each of the "2.0" and "b+c" are really Lattice expressions themselves and they can be evaluated. So before the "*" eval function can multiply its two expressions together, it must individually evaluate them. Thus, it first calls the getScalar function of the object housing the expression "2.0". This will in fact return the scalar value "2.0". Then it calls eval on the expression object housing "b+c". This object in turn first calls eval on the left ("b") and right ("c") expressions which results in the pixels for the Lattices being returned. It then adds them together, returning the result to the top of the tree where they are multiplied by 2. You can see that since all these different expression objects call the eval or getScalar function that they all inherit from LELInterface. Indeed for our example above, the actual classes involved are are LELLattice (get pixels from Lattice) and LELBinary ("+" and "*" operators) which inherit from LELInterface. When these objects are constructed, they work out whether the result of their evaluation is a scalar or not. This is how the classes higher up the tree know whether to call eval or getScalar.

The results of the computations are either returned in the buffer in the eval function or by value by getScalar

The classes evaluate the expression for each specified Lattice chunk (usually tile by tile). The section argument in the eval function specifies the section of the Lattice being evaluated. The absence of the section argument in the getScalar function emphasises the scalar nature; a scalar expression does not have a shape. For most of the letter classes, the section argument is irrelevant; the only one it really matters for is LELLattice which fetches the pixels from the Lattice. The rest only care about the shape of the buffer in the eval call.

Motivation

The many letter classes that actually do the computational work are used polymorphically. Therefore, they must have a base class declaring the interface.

Definition at line 150 of file LELInterface.h.


Constructor & Destructor Documentation

template<class T>
virtual casa::LELInterface< T >::~LELInterface ( ) [virtual]

Virtual destructor.


Member Function Documentation

template<class T>
virtual String casa::LELInterface< T >::className ( ) const [pure virtual]
template<class T>
virtual void casa::LELInterface< T >::eval ( LELArray< T > &  result,
const Slicer section 
) const [pure virtual]
template<class T>
virtual void casa::LELInterface< T >::evalRef ( LELArrayRef< T > &  result,
const Slicer section 
) const [virtual]

Reimplemented in casa::LELLattice< T >.

Referenced by casa::LatticeExprNode::evalRef().

template<class T>
LELArray<T> casa::LELInterface< T >::getArray ( ) const

Get the result of an array subexpression.

It does eval for the entire array. An exception is thrown if the shape of the subexpression is unknown.

template<class T>
const LELAttribute& casa::LELInterface< T >::getAttribute ( ) const [inline]

Get expression attribute.

Definition at line 185 of file LELInterface.h.

template<class T>
virtual LELScalar<T> casa::LELInterface< T >::getScalar ( ) const [pure virtual]
template<class T>
virtual Bool casa::LELInterface< T >::hasLock ( FileLocker::LockType  ) const [virtual]
template<class T>
Bool casa::LELInterface< T >::isScalar ( ) const [inline]

Is the result of evaluating this expression a scalar ?

Definition at line 179 of file LELInterface.h.

template<class T>
virtual Bool casa::LELInterface< T >::lock ( FileLocker::LockType  ,
uInt  nattempts 
) [virtual]
template<class T>
virtual Bool casa::LELInterface< T >::prepareScalarExpr ( ) [pure virtual]

Do further preparations (e.g.

optimization) on the expression. It returns True if the expression is an invalid scalar (i.e. with a False mask). That can happen if the expression has a component with an invalid scalar value (e.g. min(lattice) where lattice contains no valid elements).

Implemented in casa::LELFunctionBool, casa::LELFunctionDComplex, casa::LELFunctionComplex, casa::LELFunctionDouble, casa::LELFunctionFloat, casa::LELFunctionND< T >, casa::LELBinaryBool, casa::LELUnaryBool, casa::LELBinaryCmp< T >, casa::LELFunctionReal1D< T >, casa::LELUnary< T >, casa::LELRegionAsBool, casa::LELBinary< T >, casa::LELFunction1D< T >, casa::LELLattice< T >, casa::LELUnaryConst< T >, casa::LELConvert< T, F >, casa::LELCondition< T >, casa::LELRegion, and casa::LELSpectralIndex< T >.

template<class T>
static Bool casa::LELInterface< T >::replaceScalarExpr ( CountedPtr< LELInterface< T > > &  expr) [static]

If the given expression is a valid scalar, replace it by its result.

It returns False if the expression is no scalar or if the expression is an invalid scalar (i.e. with a False mask).

template<class T>
virtual void casa::LELInterface< T >::resync ( ) [virtual]
template<class T>
void casa::LELInterface< T >::setAttr ( const LELAttribute attrib) [protected]

   

Set the expression attributes of this object.

template<class T>
const IPosition& casa::LELInterface< T >::shape ( ) const [inline]

Get the shape of the expression result.

Definition at line 182 of file LELInterface.h.

template<class T>
virtual void casa::LELInterface< T >::unlock ( ) [virtual]

Member Data Documentation

template<class T>
LELAttribute casa::LELInterface< T >::attr_p [private]

The documentation for this class was generated from the following file: