casa  $Rev:20696$
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Public Member Functions | Static Public Member Functions | Private Member Functions | Static Private Member Functions | Private Attributes | Friends
casa::LatticeExprNode Class Reference

Bridging class to allow C++ expressions involving lattices. More...

#include <LatticeExprNode.h>

List of all members.

Public Member Functions

 LatticeExprNode ()
 
 

 LatticeExprNode (Int64 constant)
 Unary constant expression constructors.
 LatticeExprNode (Int constant)
 LatticeExprNode (uInt constant)
 LatticeExprNode (Long constant)
 LatticeExprNode (Float constant)
 LatticeExprNode (Double constant)
 LatticeExprNode (const Complex &constant)
 LatticeExprNode (const DComplex &constant)
 LatticeExprNode (Bool constant)
 LatticeExprNode (const IPosition &)
 Constructor from an IPosition (containing indices or axes).
 LatticeExprNode (const Lattice< Float > &lattice)
 Lattice expression (gets Lattice pixels) constructors.
 LatticeExprNode (const Lattice< Double > &lattice)
 LatticeExprNode (const Lattice< Complex > &lattice)
 LatticeExprNode (const Lattice< DComplex > &lattice)
 LatticeExprNode (const Lattice< Bool > &lattice)
 LatticeExprNode (const MaskedLattice< Float > &lattice)
 LatticeExprNode (const MaskedLattice< Double > &lattice)
 LatticeExprNode (const MaskedLattice< Complex > &lattice)
 LatticeExprNode (const MaskedLattice< DComplex > &lattice)
 LatticeExprNode (const MaskedLattice< Bool > &lattice)
 LatticeExprNode (const LCRegion &region)
 Create a lattice expression from a region.
 LatticeExprNode (const Slicer &slicer)
 LatticeExprNode (const LattRegionHolder &region)
LatticeExprNode operator[] (const LatticeExprNode &cond) const
 Masking operator using a condition.
 LatticeExprNode (const LatticeExprNode &other)
 Copy constructor (reference semantics)
virtual ~LatticeExprNode ()
 Destructor, does nothing.
LatticeExprNodeoperator= (const LatticeExprNode &other)
 Assignment (reference semantics)
const IPositiongetIPosition () const
 Get the IPosition.
CountedPtr< LELInterface< Float > > makeFloat () const
 Convert the expression to another data type.
CountedPtr< LELInterface
< Double > > 
makeDouble () const
CountedPtr< LELInterface
< Complex > > 
makeComplex () const
CountedPtr< LELInterface
< DComplex > > 
makeDComplex () const
CountedPtr< LELInterface< Bool > > makeBool () const
void eval (LELArray< Float > &result, const Slicer &section) const
 Evaluate the expression.
void eval (LELArray< Double > &result, const Slicer &section) const
void eval (LELArray< Complex > &result, const Slicer &section) const
void eval (LELArray< DComplex > &result, const Slicer &section) const
void eval (LELArray< Bool > &result, const Slicer &section) const
void evalRef (LELArrayRef< Float > &result, const Slicer &section) const
 Evaluate the expression.
void evalRef (LELArrayRef< Double > &result, const Slicer &section) const
void evalRef (LELArrayRef< Complex > &result, const Slicer &section) const
void evalRef (LELArrayRef< DComplex > &result, const Slicer &section) const
void evalRef (LELArrayRef< Bool > &result, const Slicer &section) const
void eval (Float &result) const
 Evaluate the expression (in case it is a scalar).
void eval (Double &result) const
void eval (Complex &result) const
void eval (DComplex &result) const
void eval (Bool &result) const
Float getFloat () const
Double getDouble () const
Complex getComplex () const
DComplex getDComplex () const
Bool getBool () const
Array< FloatgetArrayFloat () const
 Evaluate the expression (in case it is a constant array).
Array< DoublegetArrayDouble () const
Array< Complex > getArrayComplex () const
Array< DComplex > getArrayDComplex () const
Array< BoolgetArrayBool () const
DataType dataType () const
 Get the data type of the expression.
Bool isRegion () const
 Is the expression node a region?
Bool isScalar () const
 Is the result of "eval" a scalar?
Bool isMasked () const
 Is the result of "eval" masked?
Bool isInvalidScalar () const
 Holds the node an invalid scalar?
const IPositionshape () const
 Return the shape of the Lattice including all degenerate axes (ie.
const LELAttributegetAttribute () const
 Get the attribute object of the expression.
Bool replaceScalarExpr ()
 Replace a scalar subexpression by its result.
 LatticeExprNode (const CountedPtr< LELInterface< Float > > &expr)
 Make the object from a Counted<LELInterface> pointer.
 LatticeExprNode (const CountedPtr< LELInterface< Double > > &expr)
 LatticeExprNode (const CountedPtr< LELInterface< Complex > > &expr)
 LatticeExprNode (const CountedPtr< LELInterface< DComplex > > &expr)
 LatticeExprNode (const CountedPtr< LELInterface< Bool > > &expr)
Bool lock (FileLocker::LockType, uInt nattempts)
 Handle locking of the LatticeExpr which is delegated to all of its parts.
void unlock ()
Bool hasLock (FileLocker::LockType) const
void resync ()

Static Public Member Functions

static DataType resultDataType (DataType left, DataType right)
 Determine the resulting data type from the given data types.
static LELAttribute checkArg (const Block< LatticeExprNode > &arg, const Block< Int > &argType, Bool expectArray, Bool matchAxes=True)
 Check the arguments of a function and return the resulting attribute object.

Private Member Functions

 LatticeExprNode (LELInterface< Float > *expr)
 
    

 LatticeExprNode (LELInterface< Double > *expr)
 LatticeExprNode (LELInterface< Complex > *expr)
 LatticeExprNode (LELInterface< DComplex > *expr)
 LatticeExprNode (LELInterface< Bool > *expr)
void doPrepare () const
 Do the preparation for the evaluation.

Static Private Member Functions

static Bool areRegions (const LatticeExprNode &left, const LatticeExprNode &right)
 Test if both operands represent a region.
static LatticeExprNode newNumUnary (LELUnaryEnums::Operation oper, const LatticeExprNode &expr)
 Create a new node for a numerical unary operation.
static LatticeExprNode newNumFunc1D (LELFunctionEnums::Function func, const LatticeExprNode &expr)
 Create a new node for a numerical function with 1 argument.
static LatticeExprNode newRealFunc1D (LELFunctionEnums::Function func, const LatticeExprNode &expr)
 Create a new node for a real numerical function with 1 argument.
static LatticeExprNode newComplexFunc1D (LELFunctionEnums::Function func, const LatticeExprNode &expr)
 Create a new node for a complex numerical function with 1 argument.
static LatticeExprNode newNumReal1D (LELFunctionEnums::Function func, const LatticeExprNode &expr)
 Create a new node for a numerical function with 1 argument that returns a real number.
static LatticeExprNode newNumFunc2D (LELFunctionEnums::Function func, const LatticeExprNode &left, const LatticeExprNode &right)
 Create a new node for a numerical function with 2 arguments.
static LatticeExprNode newNumBinary (LELBinaryEnums::Operation oper, const LatticeExprNode &left, const LatticeExprNode &right)
 Create a new node for a numerical binary operator.
static LatticeExprNode newBinaryCmp (LELBinaryEnums::Operation oper, const LatticeExprNode &left, const LatticeExprNode &right)
 Create a new node for a comparison binary operator.
static Int makeEqualDim (LatticeExprNode &expr0, LatticeExprNode &expr1)
 Make (if needed and if possible) the expression nodes such that the dimensionalities are equal.

Private Attributes

Bool donePrepare_p
 Member variables.
DataType dtype_p
Bool isInvalid_p
IPosition iposition_p
const LELAttributepAttr_p
CountedPtr< LELInterface< Float > > pExprFloat_p
CountedPtr< LELInterface
< Double > > 
pExprDouble_p
CountedPtr< LELInterface
< Complex > > 
pExprComplex_p
CountedPtr< LELInterface
< DComplex > > 
pExprDComplex_p
CountedPtr< LELInterface< Bool > > pExprBool_p

Friends

LatticeExprNode operator+ (const LatticeExprNode &expr)
 All global functions need to be declared as friends.
LatticeExprNode operator- (const LatticeExprNode &expr)
LatticeExprNode operator! (const LatticeExprNode &expr)
LatticeExprNode operator+ (const LatticeExprNode &left, const LatticeExprNode &right)
 Numerical binary operators.
LatticeExprNode operator- (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode operator* (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode operator/ (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode operator% (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode operator^ (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode operator== (const LatticeExprNode &left, const LatticeExprNode &right)
 Relational binary operators.
LatticeExprNode operator> (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode operator>= (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode operator< (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode operator<= (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode operator!= (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode operator&& (const LatticeExprNode &left, const LatticeExprNode &right)
 Logical binary operators.
LatticeExprNode operator|| (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode sin (const LatticeExprNode &expr)
 Numerical 1-argument functions.
LatticeExprNode sinh (const LatticeExprNode &expr)
LatticeExprNode asin (const LatticeExprNode &expr)
LatticeExprNode cos (const LatticeExprNode &expr)
LatticeExprNode cosh (const LatticeExprNode &expr)
LatticeExprNode acos (const LatticeExprNode &expr)
LatticeExprNode tan (const LatticeExprNode &expr)
LatticeExprNode tanh (const LatticeExprNode &expr)
LatticeExprNode atan (const LatticeExprNode &expr)
LatticeExprNode exp (const LatticeExprNode &expr)
LatticeExprNode log (const LatticeExprNode &expr)
LatticeExprNode log10 (const LatticeExprNode &expr)
LatticeExprNode sqrt (const LatticeExprNode &expr)
LatticeExprNode sign (const LatticeExprNode &expr)
LatticeExprNode round (const LatticeExprNode &expr)
LatticeExprNode ceil (const LatticeExprNode &expr)
LatticeExprNode floor (const LatticeExprNode &expr)
LatticeExprNode conj (const LatticeExprNode &expr)
LatticeExprNode atan2 (const LatticeExprNode &left, const LatticeExprNode &right)
 Numerical 2-argument functions.
LatticeExprNode pow (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode fmod (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode min (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode max (const LatticeExprNode &left, const LatticeExprNode &right)
LatticeExprNode formComplex (const LatticeExprNode &left, const LatticeExprNode &right)
 Form a complex number from two real numbers.
LatticeExprNode abs (const LatticeExprNode &expr)
 Numerical 1-argument functions which result in a real number regardless of input expression type.
LatticeExprNode arg (const LatticeExprNode &expr)
LatticeExprNode real (const LatticeExprNode &expr)
LatticeExprNode imag (const LatticeExprNode &expr)
LatticeExprNode min (const LatticeExprNode &expr)
 1-argument functions operating on a numeric expression resulting in a scalar
LatticeExprNode max (const LatticeExprNode &expr)
LatticeExprNode sum (const LatticeExprNode &expr)
LatticeExprNode median (const LatticeExprNode &expr)
LatticeExprNode mean (const LatticeExprNode &expr)
LatticeExprNode variance (const LatticeExprNode &expr)
LatticeExprNode stddev (const LatticeExprNode &expr)
LatticeExprNode avdev (const LatticeExprNode &expr)
LatticeExprNode fractile (const LatticeExprNode &expr, const LatticeExprNode &fraction)
 Determine the value of the element at the part fraction from the beginning of the given lattice.
LatticeExprNode fractileRange (const LatticeExprNode &expr, const LatticeExprNode &fraction1, const LatticeExprNode &fraction2)
 Determine the value range of the elements at the part fraction1 and fraction2 from the beginning of the given lattice.
LatticeExprNode fractileRange (const LatticeExprNode &expr, const LatticeExprNode &fraction)
LatticeExprNode nelements (const LatticeExprNode &expr)
 1-argument function to get the number of elements in a lattice.
LatticeExprNode ndim (const LatticeExprNode &expr)
 1-argument function to get the dimensionality of a lattice.
LatticeExprNode length (const LatticeExprNode &expr, const LatticeExprNode &axis)
 2-argument function to get the length of an axis.
LatticeExprNode indexin (const LatticeExprNode &axis, const LatticeExprNode &indexFlags)
 2-argument function telling per pixel if its index on the given axis is contained in the 2nd argument.
LatticeExprNode rebin (const LatticeExprNode &expr, const LatticeExprNode &bin)
 2-argument function rebinning Lattice by given factors.
LatticeExprNode isNaN (const LatticeExprNode &expr)
 Test if a value is a NaN.
LatticeExprNode any (const LatticeExprNode &expr)
 Functions operating on a logical expression resulting in a scalar; Functions "any" (are any pixels "True") and "all" (are all pixels "True") result in a Bool; functions "ntrue" and "nfalse" result in a Double.
LatticeExprNode all (const LatticeExprNode &expr)
LatticeExprNode ntrue (const LatticeExprNode &expr)
LatticeExprNode nfalse (const LatticeExprNode &expr)
LatticeExprNode mask (const LatticeExprNode &expr)
 This function returns the mask of the given expression.
LatticeExprNode value (const LatticeExprNode &expr)
 This function returns the value of the expression without a mask.
LatticeExprNode amp (const LatticeExprNode &left, const LatticeExprNode &right)
 This function finds sqrt(left^2+right^2).
LatticeExprNode pa (const LatticeExprNode &left, const LatticeExprNode &right)
 This function finds 180/pi*atan2(left,right)/2.
LatticeExprNode spectralindex (const LatticeExprNode &left, const LatticeExprNode &right)
 This function finds the spectral index alpha = log(s1/s2) / log(f1/f2).
LatticeExprNode iif (const LatticeExprNode &condition, const LatticeExprNode &arg1, const LatticeExprNode &arg2)
 Function resembling the ternary ?: construct in C++.
LatticeExprNode replace (const LatticeExprNode &arg1, const LatticeExprNode &arg2)
 This function replaces every masked-off element in the first argument with the corresponding element from the second argument.
LatticeExprNode toFloat (const LatticeExprNode &expr)
 Functions to convert to the given data type.
LatticeExprNode toDouble (const LatticeExprNode &expr)
LatticeExprNode toComplex (const LatticeExprNode &expr)
LatticeExprNode toDComplex (const LatticeExprNode &expr)
LatticeExprNode toBool (const LatticeExprNode &expr)

Detailed Description

Bridging class to allow C++ expressions involving lattices.

Intended use:

Public interface

Review Status

Date Reviewed:
yyyy/mm/dd

Prerequisite

Etymology

The name is derived from the fact that this class provides an expression interface to the user which s/he may use to write C++ expressions involving Lattices. This class actually constructs the nodes of the expression tree, hence its name. It is used by the envelope class LatticeExpr and provides a bridge to the letter classes derived from LELInterface.

Synopsis

This class is part of the interface which allows the C++ programmer to enter mathematical expressions involving Lattices. It is is part of a Letter/envelope scheme. It's actually a bridge between the envelope class (LatticeExpr) and the letter classes (derived from LELInterface) and it exists largely to handle type conversions. In a single type environment, the envelope class could have directly called the letter classes.

The envelope and bridge provide the interface which the programmer sees. The letter classes do the real work and are hidden from the programmer.

All the expression manipulation functionality that the user has access to is viewable in this class; it is here that the operators, functions and constructors are defined. These allow the programmer to write mathematical expressions which involve Lattices. The letter classes take care of the optimal traversal of the Lattice and the memory mangement thereof. Thus the Lattices are iterated through and the expressions evaluated for each chunk (usually a tile shape) of the iteration.

A description of the implementation details of these classes can be found in Note 216

The available functionality is defined by the global friend functions and operators, plus the public constructors. The other public members functions are generally not of interest to the user of this class.

Generally, if one writes an expression such as a.copyData(sin(b)), the expression is automatically converted first to a LatticeExprNode and then to a LatticeExpr (which is a Lattice) before evaluation occurs. However, it may occur that you wish to build an expression from subexpressions. To do this, you must explcitly create objects of class LatticeExprNode. You cannot manipulate subexpressions of type LatticeExpr<T>. See below for an example.

Example

     ArrayLattice<Float>   f1(IPosition (2,nx,ny));
     ArrayLattice<Float>   f2(IPosition (2,nx,ny));
     f2.set(2.0);
     f1.copyData(2*f2+f2);

In this example, the values of the pixels in Lattice f1 are set to the values resulting from the expression "2*f2 + f2" I.e. the expression is evaluated for each pixel in the Lattices

Note that :

1) the Lattice::copyData function is expecting a Lattice argument. 2) LatticeExpr inherits from Lattice and therefore a LatticeExpr object is a valid argument object type 3) The expression in the copyData call is automatically converted to a LatticeExprNode by the constructors and operators in LatticeExprNode 4) The LatticeExprNode object so created is automatically converted to a LatticeExpr by casting functions in LatticeExprNode.

Example

     ArrayLattice<Float>   f1(IPosition (2,nx,ny));
     ArrayLattice<Float>   f2(IPosition (2,nx,ny));
     ArrayLattice<Double>  d(IPosition (2,nx,ny));
     ArrayLattice<Complex> c(IPosition (2,nx,ny));
     ArrayLattice<Bool>    b(IPosition (2,nx,ny));
   
     f2.set(1.0); d.set(2.0); c.set(Complex(2.0,3.0)); b.set(True);
     f1.copyData( (3.5*f2) + (cos(d)) - (10/min(d,f2)*(-abs(c))*ntrue(b)) - (C::pi) );

In this rather silly example, we fill Lattice "f1" with the result of the expression. The expression shows the use of constants, unary operations, binary operations, 1D and 2D functions. It also shows how mixed types can be handled. The output Lattice is a Float, whereas mixed into the expression are subexpressions involving Float, Double, Complex and Bool Lattices.

Example

     ArrayLattice<Float>   f1(IPosition (2,nx,ny));
     ArrayLattice<Float>   f2(IPosition (2,nx,ny));
     f2.set(2.0);
     LatticeExprNode exp1(sin(f2));
     LatticeExprNode exp2(pow(f2,2.0));
     f1.copyData(exp1+exp2);

In this example, the expression is "sin(f2) + pow(f2,2.0)", but we have put it together from two subexpressions contained in LatticeExprNode objects exp1 and exp2. Again the LatticeExprNode object formed from summing exp1 and exp2 is automatically converted to a LatticeExpr for consumption by copyData

Motivation

The Lattice expression classes enable the C++ programmer much simpler handling of mathematical expressions involving lattices. In addition, these classes provide the infrastructure on top of which we can build an image calculator for Glish users

To Do

Definition at line 439 of file LatticeExprNode.h.


Constructor & Destructor Documentation

 

Default constructor

Unary constant expression constructors.

casa::LatticeExprNode::LatticeExprNode ( const Complex &  constant)
casa::LatticeExprNode::LatticeExprNode ( const DComplex &  constant)

Constructor from an IPosition (containing indices or axes).

Lattice expression (gets Lattice pixels) constructors.

casa::LatticeExprNode::LatticeExprNode ( const Lattice< Complex > &  lattice)
casa::LatticeExprNode::LatticeExprNode ( const Lattice< DComplex > &  lattice)
casa::LatticeExprNode::LatticeExprNode ( const MaskedLattice< Complex > &  lattice)
casa::LatticeExprNode::LatticeExprNode ( const MaskedLattice< DComplex > &  lattice)

Create a lattice expression from a region.

It results in a boolean expression node.

Copy constructor (reference semantics)

Destructor, does nothing.

Make the object from a Counted<LELInterface> pointer.

Ideally this function is private, but alas it is needed in LELFunction1D, operator==, and more (too many to make them friend).

    

Make the object from a LELInterface* pointer.

casa::LatticeExprNode::LatticeExprNode ( LELInterface< Complex > *  expr) [private]
casa::LatticeExprNode::LatticeExprNode ( LELInterface< DComplex > *  expr) [private]

Member Function Documentation

static Bool casa::LatticeExprNode::areRegions ( const LatticeExprNode left,
const LatticeExprNode right 
) [static, private]

Test if both operands represent a region.

An exception is thrown if only one of them is a region.

static LELAttribute casa::LatticeExprNode::checkArg ( const Block< LatticeExprNode > &  arg,
const Block< Int > &  argType,
Bool  expectArray,
Bool  matchAxes = True 
) [static]

Check the arguments of a function and return the resulting attribute object.

The matchAxes argument tells if the axes have to match exactly or whether it is possible that one expression is a subset of another (i.e. that axes may be missing).
The expectArray argument tells if the result should be an array which is the case if one of the arguments is an array.

DataType casa::LatticeExprNode::dataType ( ) const [inline]

Get the data type of the expression.

Definition at line 680 of file LatticeExprNode.h.

References dtype_p.

void casa::LatticeExprNode::doPrepare ( ) const [private]

Do the preparation for the evaluation.

Referenced by isInvalidScalar().

void casa::LatticeExprNode::eval ( LELArray< Float > &  result,
const Slicer section 
) const

Evaluate the expression.

One can be sure that the result is not a reference to another array. This function should be used by LatticeExpr and other users.

void casa::LatticeExprNode::eval ( LELArray< Double > &  result,
const Slicer section 
) const
void casa::LatticeExprNode::eval ( LELArray< Complex > &  result,
const Slicer section 
) const
void casa::LatticeExprNode::eval ( LELArray< DComplex > &  result,
const Slicer section 
) const
void casa::LatticeExprNode::eval ( LELArray< Bool > &  result,
const Slicer section 
) const
void casa::LatticeExprNode::eval ( Float result) const

Evaluate the expression (in case it is a scalar).

The "eval" and "get*" functions do the same thing, they just have a slightly different interface.

void casa::LatticeExprNode::eval ( Double result) const
void casa::LatticeExprNode::eval ( Complex &  result) const
void casa::LatticeExprNode::eval ( DComplex &  result) const
void casa::LatticeExprNode::eval ( Bool result) const
void casa::LatticeExprNode::evalRef ( LELArrayRef< Float > &  result,
const Slicer section 
) const [inline]

Evaluate the expression.

The result can be a reference to some internal array (in particular to an array in an ArrayLattice object used as a lattice). This function is meant for internal use by the LEL classes and should not be used externally.

Definition at line 642 of file LatticeExprNode.h.

References casa::LELInterface< T >::evalRef(), and pExprFloat_p.

void casa::LatticeExprNode::evalRef ( LELArrayRef< Double > &  result,
const Slicer section 
) const [inline]

Definition at line 644 of file LatticeExprNode.h.

References casa::LELInterface< T >::evalRef(), and pExprDouble_p.

void casa::LatticeExprNode::evalRef ( LELArrayRef< Complex > &  result,
const Slicer section 
) const [inline]

Definition at line 646 of file LatticeExprNode.h.

References casa::LELInterface< T >::evalRef(), and pExprComplex_p.

void casa::LatticeExprNode::evalRef ( LELArrayRef< DComplex > &  result,
const Slicer section 
) const [inline]

Definition at line 648 of file LatticeExprNode.h.

References casa::LELInterface< T >::evalRef(), and pExprDComplex_p.

void casa::LatticeExprNode::evalRef ( LELArrayRef< Bool > &  result,
const Slicer section 
) const [inline]

Definition at line 650 of file LatticeExprNode.h.

References casa::LELInterface< T >::evalRef(), and pExprBool_p.

Evaluate the expression (in case it is a constant array).

Get the attribute object of the expression.

Definition at line 708 of file LatticeExprNode.h.

References pAttr_p.

Get the IPosition.

It throws an exception if the node does not contain an IPosition.

Holds the node an invalid scalar?

Definition at line 696 of file LatticeExprNode.h.

References donePrepare_p, doPrepare(), and isInvalid_p.

Is the result of "eval" masked?

Definition at line 692 of file LatticeExprNode.h.

References casa::LELAttribute::isMasked(), and pAttr_p.

Is the expression node a region?

Definition at line 684 of file LatticeExprNode.h.

References casa::LELAttribute::isRegion(), and pAttr_p.

Is the result of "eval" a scalar?

Definition at line 688 of file LatticeExprNode.h.

References casa::LELAttribute::isScalar(), and pAttr_p.

Handle locking of the LatticeExpr which is delegated to all of its parts.

static Int casa::LatticeExprNode::makeEqualDim ( LatticeExprNode expr0,
LatticeExprNode expr1 
) [static, private]

Make (if needed and if possible) the expression nodes such that the dimensionalities are equal.

This is only possible if both nodes have a coordinate system. It is done by creating an ExtendLattice object for the node with the lower dimensionality.

Convert the expression to another data type.

static LatticeExprNode casa::LatticeExprNode::newBinaryCmp ( LELBinaryEnums::Operation  oper,
const LatticeExprNode left,
const LatticeExprNode right 
) [static, private]

Create a new node for a comparison binary operator.

The result has the same data type as the combined input type.

Create a new node for a complex numerical function with 1 argument.

The result has the same data type as the input.

static LatticeExprNode casa::LatticeExprNode::newNumBinary ( LELBinaryEnums::Operation  oper,
const LatticeExprNode left,
const LatticeExprNode right 
) [static, private]

Create a new node for a numerical binary operator.

The result has the same data type as the combined input type.

Create a new node for a numerical function with 1 argument.

The result has the same data type as the input.

static LatticeExprNode casa::LatticeExprNode::newNumFunc2D ( LELFunctionEnums::Function  func,
const LatticeExprNode left,
const LatticeExprNode right 
) [static, private]

Create a new node for a numerical function with 2 arguments.

The result has the same data type as the combined input type.

Create a new node for a numerical function with 1 argument that returns a real number.

static LatticeExprNode casa::LatticeExprNode::newNumUnary ( LELUnaryEnums::Operation  oper,
const LatticeExprNode expr 
) [static, private]

Create a new node for a numerical unary operation.

The result has the same data type as the input.

Create a new node for a real numerical function with 1 argument.

The result has the same data type as the input.

LatticeExprNode& casa::LatticeExprNode::operator= ( const LatticeExprNode other)

Assignment (reference semantics)

LatticeExprNode casa::LatticeExprNode::operator[] ( const LatticeExprNode cond) const

Masking operator using a condition.

The given boolean expression forms a mask/region for this expression node.

Replace a scalar subexpression by its result.

static DataType casa::LatticeExprNode::resultDataType ( DataType  left,
DataType  right 
) [static]

Determine the resulting data type from the given data types.

An exception is thrown if they are incompatible.

const IPosition& casa::LatticeExprNode::shape ( ) const [inline]

Return the shape of the Lattice including all degenerate axes (ie.

axes with a length of one)

Definition at line 704 of file LatticeExprNode.h.

References pAttr_p, and casa::LELAttribute::shape().


Friends And Related Function Documentation

LatticeExprNode abs ( const LatticeExprNode expr) [friend]

Numerical 1-argument functions which result in a real number regardless of input expression type.

LatticeExprNode acos ( const LatticeExprNode expr) [friend]
LatticeExprNode all ( const LatticeExprNode expr) [friend]
LatticeExprNode amp ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]

This function finds sqrt(left^2+right^2).

This could be used to find the (biased) polarized intensity if left and right are images of Stokes Q and U.

LatticeExprNode any ( const LatticeExprNode expr) [friend]

Functions operating on a logical expression resulting in a scalar; Functions "any" (are any pixels "True") and "all" (are all pixels "True") result in a Bool; functions "ntrue" and "nfalse" result in a Double.

LatticeExprNode arg ( const LatticeExprNode expr) [friend]
LatticeExprNode asin ( const LatticeExprNode expr) [friend]
LatticeExprNode atan ( const LatticeExprNode expr) [friend]
LatticeExprNode atan2 ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]

Numerical 2-argument functions.

LatticeExprNode avdev ( const LatticeExprNode expr) [friend]
LatticeExprNode ceil ( const LatticeExprNode expr) [friend]
LatticeExprNode conj ( const LatticeExprNode expr) [friend]
LatticeExprNode cos ( const LatticeExprNode expr) [friend]
LatticeExprNode cosh ( const LatticeExprNode expr) [friend]
LatticeExprNode exp ( const LatticeExprNode expr) [friend]
LatticeExprNode floor ( const LatticeExprNode expr) [friend]
LatticeExprNode fmod ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode formComplex ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]

Form a complex number from two real numbers.

LatticeExprNode fractile ( const LatticeExprNode expr,
const LatticeExprNode fraction 
) [friend]

Determine the value of the element at the part fraction from the beginning of the given lattice.

Thus fraction=0.5 is equal to the median.

LatticeExprNode fractileRange ( const LatticeExprNode expr,
const LatticeExprNode fraction1,
const LatticeExprNode fraction2 
) [friend]

Determine the value range of the elements at the part fraction1 and fraction2 from the beginning of the given lattice.

Both fractions must be >=0 and <=1 and fraction1 must be <= fraction2. By default fraction2 is equal to 1-fraction1. Thus fraction=0.25 gives the quartile range of the lattice.

LatticeExprNode fractileRange ( const LatticeExprNode expr,
const LatticeExprNode fraction 
) [friend]
LatticeExprNode iif ( const LatticeExprNode condition,
const LatticeExprNode arg1,
const LatticeExprNode arg2 
) [friend]

Function resembling the ternary ?: construct in C++.

The argument "condition" has to be a Bool scalar or lattice. If an element in "condition" is True, the corresponding element from "arg1" is taken, otherwise it is taken from "arg2".

LatticeExprNode imag ( const LatticeExprNode expr) [friend]
LatticeExprNode indexin ( const LatticeExprNode axis,
const LatticeExprNode indexFlags 
) [friend]

2-argument function telling per pixel if its index on the given axis is contained in the 2nd argument.

The 2nd argument should be a boolean vector where True means that the index is contained. For indices >= vector_length, the 2nd argument defaults to False. Results in a Bool array.
Caution: Axes start counting at 0; If the axis is a number < 0 or >= ndim, an exception is thrown;

LatticeExprNode isNaN ( const LatticeExprNode expr) [friend]

Test if a value is a NaN.

LatticeExprNode length ( const LatticeExprNode expr,
const LatticeExprNode axis 
) [friend]

2-argument function to get the length of an axis.

Results in a scalar Float. The 2nd expression (giving the axis number) has to be a real scalar.
Caution: Axes start counting at 0; If the axis is a number < 0, an exception is thrown; If the axis is a number exceeding the dimensionality, 1 is returned;

LatticeExprNode log ( const LatticeExprNode expr) [friend]
LatticeExprNode log10 ( const LatticeExprNode expr) [friend]
LatticeExprNode mask ( const LatticeExprNode expr) [friend]

This function returns the mask of the given expression.

If it has no mask, the result is an array with all True values.

LatticeExprNode max ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode max ( const LatticeExprNode expr) [friend]
LatticeExprNode mean ( const LatticeExprNode expr) [friend]
LatticeExprNode median ( const LatticeExprNode expr) [friend]
LatticeExprNode min ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode min ( const LatticeExprNode expr) [friend]

1-argument functions operating on a numeric expression resulting in a scalar

LatticeExprNode ndim ( const LatticeExprNode expr) [friend]

1-argument function to get the dimensionality of a lattice.

0 is returned if it is a scalar. Results in a scalar Float.

LatticeExprNode nelements ( const LatticeExprNode expr) [friend]

1-argument function to get the number of elements in a lattice.

If the lattice is masked, only the True elements are counted. Results in a scalar Double.

LatticeExprNode nfalse ( const LatticeExprNode expr) [friend]
LatticeExprNode ntrue ( const LatticeExprNode expr) [friend]
LatticeExprNode operator! ( const LatticeExprNode expr) [friend]
LatticeExprNode operator!= ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode operator% ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode operator&& ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]

Logical binary operators.

LatticeExprNode operator* ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode operator+ ( const LatticeExprNode expr) [friend]

All global functions need to be declared as friends.

Unary functions.

LatticeExprNode operator+ ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]

Numerical binary operators.

LatticeExprNode operator- ( const LatticeExprNode expr) [friend]
LatticeExprNode operator- ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode operator/ ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode operator< ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode operator<= ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode operator== ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]

Relational binary operators.

LatticeExprNode operator> ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode operator>= ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode operator^ ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode operator|| ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode pa ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]

This function finds 180/pi*atan2(left,right)/2.

This could be used to find the position of linear polarization if left and right are images of Stokes U and Q, respectively.

Referenced by casa::CFStore::set().

LatticeExprNode pow ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]
LatticeExprNode real ( const LatticeExprNode expr) [friend]
LatticeExprNode rebin ( const LatticeExprNode expr,
const LatticeExprNode bin 
) [friend]

2-argument function rebinning Lattice by given factors.

The 2nd argument should be a vector (preferably Float - really Int but Int not well supported in LEL yet). Results in a T array.

LatticeExprNode replace ( const LatticeExprNode arg1,
const LatticeExprNode arg2 
) [friend]

This function replaces every masked-off element in the first argument with the corresponding element from the second argument.

The first argument has to be a lattice (expression), the second can be a scalar or lattice. The mask of the first argument is not changed. If the first argument does not have a mask, this function does nothing.

LatticeExprNode round ( const LatticeExprNode expr) [friend]
LatticeExprNode sign ( const LatticeExprNode expr) [friend]
LatticeExprNode sin ( const LatticeExprNode expr) [friend]

Numerical 1-argument functions.

LatticeExprNode sinh ( const LatticeExprNode expr) [friend]
LatticeExprNode spectralindex ( const LatticeExprNode left,
const LatticeExprNode right 
) [friend]

This function finds the spectral index alpha = log(s1/s2) / log(f1/f2).

LatticeExprNode sqrt ( const LatticeExprNode expr) [friend]
LatticeExprNode stddev ( const LatticeExprNode expr) [friend]
LatticeExprNode sum ( const LatticeExprNode expr) [friend]
LatticeExprNode tan ( const LatticeExprNode expr) [friend]
LatticeExprNode tanh ( const LatticeExprNode expr) [friend]
LatticeExprNode toBool ( const LatticeExprNode expr) [friend]
LatticeExprNode toComplex ( const LatticeExprNode expr) [friend]
LatticeExprNode toDComplex ( const LatticeExprNode expr) [friend]
LatticeExprNode toDouble ( const LatticeExprNode expr) [friend]
LatticeExprNode toFloat ( const LatticeExprNode expr) [friend]

Functions to convert to the given data type.

These are mostly meaningful for down-conversions (e.g. double to float), since up-conversions are automatically done to get matching data types when needed. Note that some conversions are not supported, such as Complex to Double or Float.
The conversion to Bool is useful to convert a region to a boolean lattice, which is only possible if the region is given in world coordinates. Otherwise an exception is thrown.

LatticeExprNode value ( const LatticeExprNode expr) [friend]

This function returns the value of the expression without a mask.

LatticeExprNode variance ( const LatticeExprNode expr) [friend]

Member Data Documentation

Member variables.

Definition at line 821 of file LatticeExprNode.h.

Referenced by isInvalidScalar().

DataType casa::LatticeExprNode::dtype_p [private]

Definition at line 822 of file LatticeExprNode.h.

Referenced by dataType().

Definition at line 824 of file LatticeExprNode.h.

Definition at line 823 of file LatticeExprNode.h.

Referenced by isInvalidScalar().

Definition at line 825 of file LatticeExprNode.h.

Referenced by getAttribute(), isMasked(), isRegion(), isScalar(), and shape().

Definition at line 830 of file LatticeExprNode.h.

Referenced by evalRef().

Definition at line 828 of file LatticeExprNode.h.

Referenced by evalRef().

Definition at line 829 of file LatticeExprNode.h.

Referenced by evalRef().

Definition at line 827 of file LatticeExprNode.h.

Referenced by evalRef().

Definition at line 826 of file LatticeExprNode.h.

Referenced by evalRef().


The documentation for this class was generated from the following file: