casa  \$Rev:20696\$
casa::VanVleck Class Reference

A class of static functions to aid with vanVleck corrections of lag data. More...

`#include <VanVleck.h>`

List of all members.

## Static Public Member Functions

static void size (uInt npts)
Set the interpolation table size.
static uInt getsize ()
get the current size.
static void setQuantization (const Matrix< Double > &qx, const Matrix< Double > &qy)
Set the x and y quantization functions.
static Bool setEquiSpaced (Double xlev, Double ylev, Double xmean, Double ymean, Int n)
Set the x and y quantization levels for the case of equi-spaced levels with a possible non-zero offset.
static void getTable (Vector< Double > &rs, Vector< Double > &rhos)
Get the data used in setting up the interpolation.
static Double r (const Double rho)
Given a rho return the corresponding corrected r Returns 0.0 if no quantization has been set yet.
static Double thresh (Int n, Double zerolag)
Given a measured zero-lag autocorrelation and number of levels (n>=3) return the first positive quantizer input threshold level.
static Double predict (Int n, Double threshhold)
Predict a given zero-lag given n and a threshold.
static Bool dcoff (Double &dcoffset, Double &threshold, Int n, Double zerolag, Double bias)
Compute an approximation to the mean signal level (DC offset) and quantizer threshold setting (both in terms of the r.m.s.

## Static Private Member Functions

static Double drbydrho (Double *rho)
The fortran numerical integration function will call this.
static Double rinc (Double &rhoi, Double &rhof)
For a given rhoi, rhof, this produces a high-accuracy numerical approximation to the integral of drbydrho over the range rhoi to rhof.
static void initInterpolator ()
initialize the interpolator
static Double threshNgt3 (Int n, Double zerolag)
compute first threshhold for a given zerolag for n>3
static Double threshN3 (Double zerolag)
compute first threshhold for a given zerolag for n==3
static Double invErf (Double x)
inverse err fn - used by invErfc
static Double invErfc (Double x)
inverse complementary err fn - used by threshN3
static Double predictNgt3 (Int n, Double threshhold)
Predict a zero-lag value given the indicated first threshold level for n>3.
static Double predictN3 (Double threshhold)
Predict a zero-lag value given the indicated first threshold level for n=3.
static Bool dcoff3 (Double &dcoffset, Double &threshold, Double zerolag, Double bias)
implementation of dcoff for the 3-level case

## Static Private Attributes

static uInt itsSize
the number of points to use in setting up the interpolator
static uInt itsNx
static uInt itsNy
static Bool itsEquiSpaced
static Double itsXlev
static Double itsYlev
static Double itsXmean
static Double itsYmean
static Interpolate1D< Double,
Double > *
itsInterp
The interpolator.
static Vector< DoubleitsQx0
the quantization functions
static Vector< DoubleitsQx1
static Vector< DoubleitsQy0
static Vector< DoubleitsQy1
static Vector< DoubleitsQx0Qx0
Useful combinations of the above - to speed up drbydrho these are -1/2*(Qx0*Qx0) and -1/2*(Qy0*Qy0) These are only used for i up to (itsQx0.nelements() and for j up to (itsQy0.nelements()).
static Vector< DoubleitsQy0Qy0
static Matrix< DoubleitsQx0Qy0
This is Qx0[i]*Qy0[j].
static Matrix< DoubleitsQx1Qy1diffs
This is (Qx1[i+1]-Qx1[i])*(Qy1[j+1]*Qy1[j])
static Mutex theirMutex
The mutex to make the functions thread-safe.

## Detailed Description

A class of static functions to aid with vanVleck corrections of lag data.

Public interface

Date Reviewed:
yyyy/mm/dd

### Prerequisite

• Familiarity with the issues involved in turning digitally sampled lag data from a correlator into spectral data.

### Etymology

This provides the functions necessary to determine the van Vleck correction for a general n-level by m-level correlator.

### Synopsis

This provides the functions necessary to determine the van Vleck correction for a general n-level by m-level correlator.

### Motivation

The GBT spectrometer provides the measured auto-correlation and cross-correlation lags. The gbt MeasurementSet filler (gbtmsfiller) needs to convert those lags to the spectral domain. These functions allow the filler to calculate the van Vleck correction appropriate for each measured set of lags. They are of general and hence are not specific to the GBT spectrometer.

The functions here are static because of the nature of the underlying numerical quadrature fortran code used to integrate the drbyrho function.

### To Do

• The inverse error functions may be more generally useful. It exists here only as a private member function to be used internally.

Definition at line 94 of file VanVleck.h.

## Member Function Documentation

 static Bool casa::VanVleck::dcoff ( Double & dcoffset, Double & threshold, Int n, Double zerolag, Double bias ) ` [static]`

Compute an approximation to the mean signal level (DC offset) and quantizer threshold setting (both in terms of the r.m.s.

signal input level) given the observed positive bias (the asymptotic limit of the measured autocorrelation at large lags) and the zero-lag autocorrelation. dcoffset is the mean signal level, threshold is the quantizer setting, n is the number of levels, zerolag is the zero-lag value and bias is the asymptotic bias. Currently, this is only available for the n==3 level case, all other cases set the returned dcoffset to 0 and use thresh() to set the returned value of threshold. A return value of F indicates that the zerolag and bias values are inconsistent and the dcoffset can not be determined. In that case, the returned dcoffset is 0 and thresh() is used to set the threshold level.

 static Bool casa::VanVleck::dcoff3 ( Double & dcoffset, Double & threshold, Double zerolag, Double bias ) ` [static, private]`

implementation of dcoff for the 3-level case

 static Double casa::VanVleck::drbydrho ( Double * rho ) ` [static, private]`

The fortran numerical integration function will call this.

For a given rho and quantization functions, this computes, via Price's theorem, the value dr/drho of the derivative, with respect to rho, of the expected value of the correlator output.

 static uInt casa::VanVleck::getsize ( ) ` [static]`

get the current size.

 static void casa::VanVleck::getTable ( Vector< Double > & rs, Vector< Double > & rhos ) ` [static]`

Get the data used in setting up the interpolation.

 static void casa::VanVleck::initInterpolator ( ) ` [static, private]`

initialize the interpolator

 static Double casa::VanVleck::invErf ( Double x ) ` [static, private]`

inverse err fn - used by invErfc

 static Double casa::VanVleck::invErfc ( Double x ) ` [static, private]`

inverse complementary err fn - used by threshN3

Referenced by threshN3().

 static Double casa::VanVleck::predict ( Int n, Double threshhold ) ` [inline, static]`

Predict a given zero-lag given n and a threshold.

This is included here to be used as a check against the output of thresh.

Definition at line 145 of file VanVleck.h.

References predictN3(), and predictNgt3().

 static Double casa::VanVleck::predictN3 ( Double threshhold ) ` [inline, static, private]`

Predict a zero-lag value given the indicated first threshold level for n=3.

Definition at line 229 of file VanVleck.h.

References casa::sqrt().

Referenced by predict().

 static Double casa::VanVleck::predictNgt3 ( Int n, Double threshhold ) ` [static, private]`

Predict a zero-lag value given the indicated first threshold level for n>3.

Referenced by predict().

 static Double casa::VanVleck::r ( const Double rho ) ` [static]`

Given a rho return the corresponding corrected r Returns 0.0 if no quantization has been set yet.

 static Double casa::VanVleck::rinc ( Double & rhoi, Double & rhof ) ` [static, private]`

For a given rhoi, rhof, this produces a high-accuracy numerical approximation to the integral of drbydrho over the range rhoi to rhof.

 static Bool casa::VanVleck::setEquiSpaced ( Double xlev, Double ylev, Double xmean, Double ymean, Int n ) ` [static]`

Set the x and y quantization levels for the case of equi-spaced levels with a possible non-zero offset.

The total number of levels is given by n, which must be 3 or 9. If n is not 3 or 9, False will be returned and no quantization will have been set. For the 3- and 9- level cases a bivarate normal integral calculation will be used. That is much faster than the more general numerical integration used by setQuantization.

 static void casa::VanVleck::setQuantization ( const Matrix< Double > & qx, const Matrix< Double > & qy ) ` [static]`

Set the x and y quantization functions.

Each matrix should have dimensions (2,n) where n is the number of levels. The first row (0,...) is the (n-1) threshold levels and the second row is the n quantizations based on those thresholds. The thresholds may include a DC offset. The (0,(n-1)) element is never used and need not be set.

 static void casa::VanVleck::size ( uInt npts ) ` [static]`

Set the interpolation table size.

Should be an odd number. The default size is 65.

 static Double casa::VanVleck::thresh ( Int n, Double zerolag ) ` [inline, static]`

Given a measured zero-lag autocorrelation and number of levels (n>=3) return the first positive quantizer input threshold level.

This can be used to set the up the matrix arguments used in setQuantization.

Definition at line 139 of file VanVleck.h.

References threshN3(), and threshNgt3().

 static Double casa::VanVleck::threshN3 ( Double zerolag ) ` [inline, static, private]`

compute first threshhold for a given zerolag for n==3

Definition at line 214 of file VanVleck.h.

References invErfc(), and casa::sqrt().

Referenced by thresh().

 static Double casa::VanVleck::threshNgt3 ( Int n, Double zerolag ) ` [static, private]`

compute first threshhold for a given zerolag for n>3

Referenced by thresh().

## Member Data Documentation

 Bool casa::VanVleck::itsEquiSpaced` [static, private]`

Definition at line 171 of file VanVleck.h.

 Interpolate1D* casa::VanVleck::itsInterp` [static, private]`

The interpolator.

Definition at line 176 of file VanVleck.h.

 uInt casa::VanVleck::itsNx` [static, private]`

Definition at line 169 of file VanVleck.h.

 uInt casa::VanVleck::itsNy` [static, private]`

Definition at line 169 of file VanVleck.h.

 Vector casa::VanVleck::itsQx0` [static, private]`

the quantization functions

Definition at line 179 of file VanVleck.h.

 Vector casa::VanVleck::itsQx0Qx0` [static, private]`

Useful combinations of the above - to speed up drbydrho these are -1/2*(Qx0*Qx0) and -1/2*(Qy0*Qy0) These are only used for i up to (itsQx0.nelements() and for j up to (itsQy0.nelements()).

Definition at line 185 of file VanVleck.h.

 Matrix casa::VanVleck::itsQx0Qy0` [static, private]`

This is Qx0[i]*Qy0[j].

Definition at line 187 of file VanVleck.h.

 Vector casa::VanVleck::itsQx1` [static, private]`

Definition at line 179 of file VanVleck.h.

 Matrix casa::VanVleck::itsQx1Qy1diffs` [static, private]`

This is (Qx1[i+1]-Qx1[i])*(Qy1[j+1]*Qy1[j])

Definition at line 189 of file VanVleck.h.

 Vector casa::VanVleck::itsQy0` [static, private]`

Definition at line 179 of file VanVleck.h.

 Vector casa::VanVleck::itsQy0Qy0` [static, private]`

Definition at line 185 of file VanVleck.h.

 Vector casa::VanVleck::itsQy1` [static, private]`

Definition at line 179 of file VanVleck.h.

 uInt casa::VanVleck::itsSize` [static, private]`

the number of points to use in setting up the interpolator

Definition at line 169 of file VanVleck.h.

 Double casa::VanVleck::itsXlev` [static, private]`

Definition at line 173 of file VanVleck.h.

 Double casa::VanVleck::itsXmean` [static, private]`

Definition at line 173 of file VanVleck.h.

 Double casa::VanVleck::itsYlev` [static, private]`

Definition at line 173 of file VanVleck.h.

 Double casa::VanVleck::itsYmean` [static, private]`

Definition at line 173 of file VanVleck.h.

 Mutex casa::VanVleck::theirMutex` [static, private]`

The mutex to make the functions thread-safe.

Definition at line 191 of file VanVleck.h.

The documentation for this class was generated from the following file: