casa
$Rev:20696$
|
Class for non-linear least-squares fit. More...
#include <NonLinearFit.h>
Public Member Functions | |
NonLinearFit (Bool svd=False) | |
Create a fitter: the normal way to generate a fitter object. | |
NonLinearFit (const NonLinearFit &other) | |
Copy constructor (deep copy) | |
NonLinearFit & | operator= (const NonLinearFit &other) |
Assignment (deep copy) | |
virtual | ~NonLinearFit () |
Destructor. | |
void | setMaxIter (uInt maxIter=MAXITER) |
setMaxIter() sets the maximum number of iterations to do before stopping. | |
uInt | getMaxIter () const |
getMaxIter() queries what the maximum number of iterations currently is | |
uInt | currentIteration () const |
currentIteration() queries what the current iteration is | |
void | setCriteria (const Double criteria=CRITERIUM) |
setCriteria() sets the convergence criteria. | |
Double | getCriteria () const |
getCriteria() queries the current criteria | |
Bool | converged () const |
Check to see if the fit has converged. | |
Static Public Attributes | |
static const uInt | MAXITER |
Default maximum number of iterations (30) | |
static const Double | CRITERIUM |
Default convergence criterium (0.001) | |
Protected Member Functions | |
virtual Bool | fitIt (Vector< typename FunctionTraits< T >::BaseType > &sol, const Array< typename FunctionTraits< T >::BaseType > &x, const Vector< typename FunctionTraits< T >::BaseType > &y, const Vector< typename FunctionTraits< T >::BaseType > *const sigma, const Vector< Bool > *const mask=0)=0 |
Generalised fitter. | |
Protected Attributes | |
uInt | maxiter_p |
Maximum number of iterations. | |
uInt | curiter_p |
Current iteration number. | |
Double | criterium_p |
Convergence criteria. | |
Bool | converge_p |
Has fit converged. |
Class for non-linear least-squares fit.
A nonlinear function is used to fit a set of data points.
NOTE: Constraints added. Documentation out of date at moment, check the tLinearFitSVD and tNonLinearFirLM programs for examples.
The following is a brief summary of the non-linear least-squares fit problem. See module header, Fitting , for a more complete description.
Given a set of N data points (measurements), (x(i), y(i)) i = 0,...,N-1, along with a set of standard deviations, sigma(i), for the data points, and a specified non-linear function, f(x;a) where a = a(j) j = 0,...,M-1 are a set of parameters to be determined, the non-linear least-squares fit tries to minimize
chi-square = [(y(0)-f(x(0);a)/sigma(0)]^2 + [(y(1)-f(x(1);a)/sigma(1)]^2 + ... + [(y(N-1)-f(x(N-1);a))/sigma(N-1)]^2.
by adjusting {a(j)} in the equation.
For multidimensional functions, x(i) is a vector, and
f(x(i);a) = f(x(i,0), x(i,1), x(i,2), ...;a)
If the measurement errors (standard deviation sigma) are not known at all, they can all be set to one initially. In this case, we assume all measurements have the same standard deviation, after minimizing chi-square, we recompute
A statistic weight can be also be assigned to each measurement if the standard deviation is not available. sigma can be calculated from
sigma = 1/ sqrt(weight)
Alternatively a 'weight' switch can be set with asWeight()
. For best arithmetic performance, weight should be normalized to a maximum value of one. Having a large weight value can sometimes lead to overflow problems.
The function to be fitted to the data can be given as an instance of the Function class. One can also form a sum of functions using the CompoundFunction .
For small datasets the usage of the calls is:
Note that the fitter is reusable. An example is given in the following.
The solution of a fit always produces the total number of parameters given to the fitter. I.e. including any parameters that were fixed. In the latter case the solution returned will be the fixed value.
If there are a large number of unknowns or a large number of data points machine memory limits (or timing reasons) may not allow a complete in-core fitting to be performed. In this case one can incrementally build the normal equation (see buildNormalMatrix()).
The normal operation of the class tests for real inversion problems only. If tests are needed for almost collinear columns in the solution matrix, the collinearity can be set as the square of the sine of the minimum angle allowed.
Singular Value Decomposition is supported by setting the 'svd' switch, which has a behaviour completely identical to, apart from a default collinearity check of 1e-8.
Other information (see a.o. LSQaips ) can be set and obtained as well.
The creation of the class module was driven by the need to write code to fit Gaussian functions to data points.
Definition at line 153 of file NonLinearFit.h.
casa::NonLinearFit< T >::NonLinearFit | ( | Bool | svd = False | ) | [explicit] |
Create a fitter: the normal way to generate a fitter object.
Necessary data will be deduced from the Functional provided with setFunction()
. Create optionally a fitter with SVD behaviour specified.
casa::NonLinearFit< T >::NonLinearFit | ( | const NonLinearFit< T > & | other | ) |
Copy constructor (deep copy)
virtual casa::NonLinearFit< T >::~NonLinearFit | ( | ) | [virtual] |
Destructor.
Bool casa::NonLinearFit< T >::converged | ( | ) | const [inline] |
Check to see if the fit has converged.
Definition at line 195 of file NonLinearFit.h.
uInt casa::NonLinearFit< T >::currentIteration | ( | ) | const [inline] |
currentIteration() queries what the current iteration is
Definition at line 184 of file NonLinearFit.h.
virtual Bool casa::NonLinearFit< T >::fitIt | ( | Vector< typename FunctionTraits< T >::BaseType > & | sol, |
const Array< typename FunctionTraits< T >::BaseType > & | x, | ||
const Vector< typename FunctionTraits< T >::BaseType > & | y, | ||
const Vector< typename FunctionTraits< T >::BaseType > *const | sigma, | ||
const Vector< Bool > *const | mask = 0 |
||
) | [protected, pure virtual] |
Generalised fitter.
Implements casa::GenericL2Fit< T >.
Implemented in casa::NonLinearFitLM< T >, and casa::NonLinearFitLM< Double >.
Double casa::NonLinearFit< T >::getCriteria | ( | ) | const [inline] |
getCriteria() queries the current criteria
Definition at line 192 of file NonLinearFit.h.
uInt casa::NonLinearFit< T >::getMaxIter | ( | ) | const [inline] |
getMaxIter() queries what the maximum number of iterations currently is
Definition at line 181 of file NonLinearFit.h.
NonLinearFit& casa::NonLinearFit< T >::operator= | ( | const NonLinearFit< T > & | other | ) |
Assignment (deep copy)
void casa::NonLinearFit< T >::setCriteria | ( | const Double | criteria = CRITERIUM | ) | [inline] |
setCriteria() sets the convergence criteria.
The actual value and its interpretation depends on the derived class used to do the actual iteration. Default value is 0.001.
Definition at line 189 of file NonLinearFit.h.
void casa::NonLinearFit< T >::setMaxIter | ( | uInt | maxIter = MAXITER | ) |
setMaxIter() sets the maximum number of iterations to do before stopping.
Default value is 30.
Reimplemented from casa::LSQFit.
Bool casa::NonLinearFit< T >::converge_p [protected] |
Has fit converged.
Definition at line 206 of file NonLinearFit.h.
const Double casa::NonLinearFit< T >::CRITERIUM [static] |
Default convergence criterium (0.001)
Definition at line 160 of file NonLinearFit.h.
Double casa::NonLinearFit< T >::criterium_p [protected] |
Convergence criteria.
Definition at line 204 of file NonLinearFit.h.
Referenced by casa::NonLinearFit< Double >::getCriteria(), and casa::NonLinearFit< Double >::setCriteria().
uInt casa::NonLinearFit< T >::curiter_p [protected] |
Current iteration number.
Definition at line 202 of file NonLinearFit.h.
Referenced by casa::NonLinearFit< Double >::currentIteration().
const uInt casa::NonLinearFit< T >::MAXITER [static] |
Default maximum number of iterations (30)
Reimplemented from casa::LSQFit.
Definition at line 158 of file NonLinearFit.h.
uInt casa::NonLinearFit< T >::maxiter_p [protected] |
Maximum number of iterations.
Reimplemented from casa::LSQFit.
Definition at line 195 of file NonLinearFit.h.
Referenced by casa::NonLinearFit< Double >::currentIteration(), and casa::NonLinearFit< Double >::getMaxIter().