casa
5.7.0-16
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
casa
casacore
scimath
Fitting.h
Go to the documentation of this file.
1
//# Fitting.h: Module for various forms of mathematical fitting
2
//# Copyright (C) 1995,1999-2002,2004
3
//# Associated Universities, Inc. Washington DC, USA.
4
//#
5
//# This library is free software; you can redistribute it and/or modify it
6
//# under the terms of the GNU Library General Public License as published by
7
//# the Free Software Foundation; either version 2 of the License, or (at your
8
//# option) any later version.
9
//#
10
//# This library is distributed in the hope that it will be useful, but WITHOUT
11
//# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
//# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
13
//# License for more details.
14
//#
15
//# You should have received a copy of the GNU Library General Public License
16
//# along with this library; if not, write to the Free Software Foundation,
17
//# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
18
//#
19
//# Correspondence concerning AIPS++ should be addressed as follows:
20
//# Internet email: aips2-request@nrao.edu.
21
//# Postal address: AIPS++ Project Office
22
//# National Radio Astronomy Observatory
23
//# 520 Edgemont Road
24
//# Charlottesville, VA 22903-2475 USA
25
//#
26
//# $Id$
27
#ifndef SCIMATH_FITTING_H
28
#define SCIMATH_FITTING_H
29
30
#include <
casacore/casa/aips.h
>
31
#include <
casacore/scimath/Fitting/LSQFit.h
>
32
#include <
casacore/scimath/Fitting/LinearFit.h
>
33
#include <
casacore/scimath/Fitting/LinearFitSVD.h
>
34
#include <
casacore/scimath/Fitting/NonLinearFit.h
>
35
#include <
casacore/scimath/Fitting/NonLinearFitLM.h
>
36
37
namespace
casacore
{
//# NAMESPACE CASACORE - BEGIN
38
39
// <module>
40
//
41
// <summary>
42
// Module for various forms of mathematical fitting.
43
// </summary>
44
//
45
// <prerequisite>
46
// <li> Basic principles can be found in
47
// <a href="../notes/224.html">Note 224</a>.
48
// </prerequisite>
49
//
50
// <reviewed reviewer="Neil Killeen" date="2000/06/01"
51
// demos="dLSQFit,dConstraints">
52
// </reviewed>
53
//
54
// <synopsis>
55
//
56
// The Fitting module holds various classes and functions related
57
// to fitting models to data. Currently only least-squares fits
58
// are handled.
59
//
60
// <H3>Least-Squares Fits</H3>
61
//
62
// We are given N data points, which
63
// we will fit to a function with M adjustable parameters.
64
// N should normally be greater than M, and at least M non-dependent relations
65
// between the parameters should be given. In cases where there are less than
66
// M independent points, Singular-Value-Deconvolution methods are available.
67
// Each condition equation can be given an
68
// (estimated) standard deviation, which is comparable to the statistical
69
// weight, which is often used in place of the standard deviation.
70
//
71
// The best fit is assumed to be the one which minimises the 'chi-squared'.
72
//
73
// In the (rather common) case that individual errors are not known for
74
// the individual data points, one can <em>assume</em> that the
75
// individual errors are unity, calculate the best fit function, and then
76
// <em>estimate</em> the errors (assuming they are all identical) by
77
// inverting the <em>normal equations</em>.
78
// Of course, in this case we do not have an independent estimate of
79
// chi<sup>2</sup>.
80
//
81
// The methods used in the Fitting module are described in
82
// <a href="../notes/224.html">Note 224</a>.
83
// The methods (both standard and
84
// SVD) are based on a Cholesky decomposition of the normal equations.
85
//
86
// General background can also be found in <EM>Numerical Recipes</EM> by
87
// Press <EM>et al.</EM>.
88
//
89
// <H3>Linear Least-Squares Fits</H3>
90
//
91
// The <em>linear least squares</em> solution assumes that the fit function
92
// is a linear combination of M linear condition equations.
93
// It is important to note that <em>linear</em> refers to the dependence on
94
// the parameters; the condition equations may be very non-linear in the
95
// dependent arguments.
96
//
97
// The linear least squares problem is solved by explicitly
98
// forming and inverting the normal equations.
99
// If the normal equations are close to
100
// singular, the <em>singular value decomposition</em> (SVD) method may be
101
// used. <em>Numerical Recipes</em> suggests the SVD be always used, however
102
// this advice is not universally accepted.
103
//
104
// <H3>Linear Least-Squares Fits with Known Linear Constraints</H3>
105
//
106
// Sometimes there are not enough independent observations, <EM>i.e.</EM>, the
107
// number of data points <I>N</I> is less than the number of adjustable
108
// parameters <I>M</I>. In this case the least-squares problem cannot be
109
// solved unless additional ``constraints'' on the adjustable parameters can
110
// be introduced. Under other circumstances, we may want to introduce
111
// constraints on the adjustable
112
// parameters to add additional information, <EM>e.g.</EM>, the sum of angles
113
// of a triangle. In more complex cases, the forms of the constraints
114
// are unknown. Here we confine ourselves to
115
// least-squares fit problems in which the forms of constraints are known.
116
//
117
// If the forms of constraint equations are known, the least-squares
118
// problem can be solved. (In the case where not
119
// enough independent observations are available, a minimum number of
120
// sufficient constraint equations have to be provided. The singular value
121
// decomposition method can be used to calculate the minimum number of
122
// orthogonal constraints needed).
123
//
124
// <H3>Nonlinear Least-Squares Fits</H3>
125
//
126
// We now consider the situation where the fitted function
127
// depends <EM>nonlinearly</EM> on the set of
128
// <I>M</I> adjustable parameters.
129
// But with nonlinear dependences the minimisation of chi<sup>2</sup> cannot
130
// proceed as in the linear case.
131
// However, we can <EM>linearise</EM> the problem, find an
132
// approximate solution, and then iteratively seek the minimising solution.
133
// The iteration stops when e.g. the adjusted parameters do not change
134
// anymore. In general it is very difficult to find a general solution that
135
// finds a global minimum, and the solution has to be matched with the problem.
136
// The Levenberg-Marquardt algorithm is a general non-linear fitting method
137
// which can produce correct results in many cases. It has been included, but
138
// always be aware of possible problems with non-linear solutions.
139
//
140
// <H3>What Is Available?</H3>
141
//
142
// The basic classes are <linkto class=LSQFit>LSQFit</linkto> and
143
// <linkto class=LSQaips>LSQaips</linkto>.
144
// They provide the basic framework for normal equation generation, solving
145
// the normal equations and iterating in the case of non-linear equations.
146
//
147
// The <em>LSQFit</em> class uses a native C++ interface (pointers and
148
// iterators). They handle real data and complex data.
149
// The <em>LSQaips</em> class offers the functionality of <em>LSQFit</em>,
150
// but with an additional Casacore Array interface.<br>
151
//
152
// Functionality is
153
// <ol>
154
// <li> Fit a linear combination of functions to data points, and, optionally,
155
// use supplied constraint conditions on the adjustable parameters.
156
// <li> Fit a nonlinear function to data points. The adjustable parameters
157
// are parameters inside the function.
158
// <li> Repetitively perform a linear fit for every line of pixels parallel
159
// to any axis in a Lattice.
160
// <li> Solve (as opposed to fit to a set of data), a set of equations
161
// </ol>
162
//
163
// In addition to the basic Least Squares routines in the <src>LSQFit</src> and
164
// <src>LSQaips</src> classes, this module contains also a set of direct
165
// data fitters:
166
// <ul>
167
// <li> <src>Fit2D</src>
168
// <li> <src>LinearFit</src>
169
// <li> <src>LinearFitSVD</src>
170
// <li> <src>NonLinearFit</src>
171
// <li> <src>NonLinearFitLM</src>
172
// </ul>
173
// Furthermore class <src>LatticeFit</src> can do fitting on lattices.
174
//
175
// Note that the basic functions have <em>LSQ</em> in their title; the
176
// one-step fitting functions <em>Fit</em>.
177
//
178
// The above fitting problems can usually be solved by directly
179
// calling the <src>fit()</src> member function provided by one of the
180
// <src>Fit</src> classes above, or by
181
// gradually building the normal equation matrix and solving the
182
// normal equations (<src>solve()</src>).
183
//
184
// A Distributed Object interface to the classes is available
185
// (<src>DOfitting</src>) for use in the <I>Glish</I> <src>dfit</src>
186
// object, available through the <src>fitting.g</src> script.
187
//
188
// </synopsis>
189
//
190
// <motivation>
191
// This module was motivated by baseline subtraction/continuum fitting in the
192
// first instance.
193
// </motivation>
194
//
195
// <todo asof="2004/09/22">
196
// <li> extend the Fit interface classes to cater for building the
197
// normal equations in parts.
198
// </todo>
199
//
200
// </module>
201
//
202
203
}
//# NAMESPACE CASACORE - END
204
205
#endif
206
207
LSQFit.h
NonLinearFitLM.h
LinearFit.h
LinearFitSVD.h
aips.h
NonLinearFit.h
casacore
#define casacore
<X11/Intrinsic.h> #defines true, false, casacore::Bool, and String.
Definition:
X11Intrinsic.h:42
Generated on Sun Sep 1 2019 23:32:18 for casa by
1.8.5