Getting Started Documentation Glish Learn More Programming Contact Us
Version 1.9 Build 1556
News FAQ
Search Home


next up previous contents
Next: APPLICATION TO EXISTING TELESCOPES Up: Some practical aspects of the matrix-based MEASUREMENT EQUATION Previous: INTRODUCTION


THE CASE OF A CENTRAL POINT SOURCE

For a given interferometer, the measured visibilities for a point source in the centre of the field! can be described by a 4-element `coherency vector' $ \vec{v}\,$, which is related to the so-called `Stokes visibility vector' $ \vec{s}_{ij}^{}$ = (I, Q, U, V)ijT of the observed source by a matrix operation,

$\displaystyle \vec{v}_{ij}^{}$ = $\displaystyle \left(\vphantom{\begin{array}{c}
v_{\rm pp}\\  v_{\rm pq}\\  v_{\rm qp}\\  v_{\rm qq}
\end{array}}\right.$$\displaystyle \begin{array}{c}
v_{\rm pp}\\  v_{\rm pq}\\  v_{\rm qp}\\  v_{\rm qq}
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c}
v_{\rm pp}\\  v_{\rm pq}\\  v_{\rm qp}\\  v_{\rm qq}
\end{array}}\right)_{ij}^{}$ =  $\displaystyle \vec{M}_{ij}^{}$ ($\displaystyle \vec{J}^{\null}_{i}$ $\displaystyle \otimes$ $\displaystyle \vec{J}^{\ast}_{j}$$\displaystyle \vec{S}\,$$\displaystyle \left(\vphantom{\begin{array}{c} I\\  Q\\  U\\  V \end{array}}\right.$$\displaystyle \begin{array}{c} I\\  Q\\  U\\  V \end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c} I\\  Q\\  U\\  V \end{array}}\right)_{ij}^{}$ + $\displaystyle \vec{A}_{ij}^{}$  $\displaystyle \approx$  ($\displaystyle \vec{J}^{\null}_{i}$ $\displaystyle \otimes$ $\displaystyle \vec{J}^{\ast}_{j}$$\displaystyle \vec{S}\,$$\displaystyle \left(\vphantom{\begin{array}{c} I\\  Q\\  U\\  V \end{array}}\right.$$\displaystyle \begin{array}{c} I\\  Q\\  U\\  V \end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c} I\\  Q\\  U\\  V \end{array}}\right)_{ij}^{}$ (1)

Here subscripts p and q represent the two polarisation channels measured by each antenna. (NB: They are named X and Y for WSRT and ATCA, and R and L for the VLA). The subscripts i and j represent the antenna numbers, and $ \otimes$ represents the matrix direct product (also called the tensor product, or Kronecker product).

The Stokes visibility vector depends on the brightness distribution and on the length and orientation of baseline ij. The 4 x 4 matrix $ \vec{S}\,$ converts it into a coherency vector (ignoring instrumental effects). $ \vec{S}\,$ is unitary, except for a normalising constant: $ \vec{S}^{-1}_{}$ = 2$ \vec{S}^{*T}_{}$. It cannot be decomposed into antenna-based parts.

$\displaystyle \vec{S}\,$ = $\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \left(\vphantom{\begin{array}{rrrr}
1&1&\;0&0\\
0&0&1&i\\
0&0&1&-i\\
1&-1&0&0
\end{array}}\right.$$\displaystyle \begin{array}{rrrr}
1&1&\;0&0\\
0&0&1&i\\
0&0&1&-i\\
1&-1&0&0
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{rrrr}
1&1&\;0&0\\
0&0&1&i\\
0&0&1&-i\\
1&-1&0&0
\end{array}}\right)$ (2)

The 4-element vector $ \vec{A}_{ij}^{}$ represents additive interferometer-based effects. Examples are receiver noise, and correlator offsets. The 4 x 4 diagonal matrix $ \vec{M}_{ij}^{}$ represents multiplicative interferometer-based effects, which cannot be factored into antenna-based contributions. Examples are decorrelations, which usually give diagonal matrices with identical elements. Fortunately, the elements of $ \vec{A}_{ij}^{}$ and $ \vec{M}_{ij}^{}$ tend to be small or close to unity in practice, and will be ignored here.

Thus it is assumed that, in the case of a central point source, all instrumental effects can be factorised into antenna-based contributions. The 4 x 4 interferometer response matrix $ \vec{J}^{\null}_{i}$ $ \otimes$ $ \vec{J}^{\ast}_{j}$ then consists of a direct matrix product of two 2 x 2 antenna-based response matrices.1 The reader will note that this is the polarimetric generalisation of the familiar `Selfcal assumption'.

This antenna response matrix $ \vec{J}_{i}^{}$ can be decomposed into a product of matrices, each of which models a specific instrumental effect in the signal path.2

$\displaystyle \vec{J}_{i}^{}$  =  $\displaystyle \vec{G}_{i}^{}$ $\displaystyle \vec{D}_{i}^{}$ $\displaystyle \vec{C}_{i}^{}$ $\displaystyle \vec{B}_{i}^{}$ $\displaystyle \vec{P}_{i}^{}$ $\displaystyle \vec{F}_{i}^{}$ (3)

in which,

It should be noted that these matrices generally do not commute, so that their order is important! For instance, a diagonal matrix like $ \vec{G}_{i}^{}$ does not commute with a matrix with non-zero elements off the diagonal, like $ \vec{D}_{i}^{}$. Thus, one should be a little careful in sweeping all complex gain effects into a single matrix $ \vec{G}_{i}^{}$, irrespective of where they occur in the signal path.

Matrices $ \vec{G}_{i}^{}$, $ \vec{P}_{i}^{}$ and $ \vec{F}_{i}^{}$ are Cartesian coordinate transforms, and thus unitary: $ \vec{A}^{-1}_{}$ = $ \vec{A}^{*T}_{}$. Matrix $ \vec{C}_{i}^{}$ is not unitary if it represents a conversion from linear to circular polarisation (..?). Do they commute??


next up previous contents
Next: APPLICATION TO EXISTING TELESCOPES Up: Some practical aspects of the matrix-based MEASUREMENT EQUATION Previous: INTRODUCTION   Contents
Please send questions or comments about AIPS++ to aips2-request@nrao.edu.
Copyright © 1995-2000 Associated Universities Inc., Washington, D.C.

Return to AIPS++ Home Page
2006-10-15