Getting Started Documentation Glish Learn More Programming Contact Us
Version 1.9 Build 1367
News FAQ
Search Home


next up previous contents
Next: CLEAN Up: The Generic Interferometer: II Image Solvers AIPS++ Implementation Previous: Projection Onto Convex Sets

The Maximum Entropy Method

Generalizing MEM is quite easy: one maximizes the entropy of $ \vec{\cal I}\,$ subject to $ \chi^{2}_{}$ taking some specified value, and possibly that the integral of $ \vec{\cal I}\,$ be equal to some value. Nityananda and Narayan (1982) show that for an entropy measure H(), the entropy of polarized radiation is given the sum of the entropies for the two independent polarization states of the radiation (i.e. eigenvalues of the coherence matrix $ \cal {B}$.)

H$\displaystyle \left(\vphantom{\vec{\cal I}}\right.$$\displaystyle \vec{\cal I}\,$ $\displaystyle \left.\vphantom{\vec{\cal I}}\right)$ = H$\displaystyle \left(\vphantom{I+\sqrt{Q^2+U^2+V^2}}\right.$I + $\displaystyle \sqrt{Q^2+U^2+V^2}$ $\displaystyle \left.\vphantom{I+\sqrt{Q^2+U^2+V^2}}\right)$ + H$\displaystyle \left(\vphantom{I-\sqrt{Q^2+U^2+V^2}}\right.$I - $\displaystyle \sqrt{Q^2+U^2+V^2}$ $\displaystyle \left.\vphantom{I-\sqrt{Q^2+U^2+V^2}}\right)$ (11)

One then calculates the gradient of H with respect to $ \vec{\cal I}\,$ and in combination with the gradient of $ \chi^{2}_{}$, generates a search direction with which to update the current estimate of $ \vec{\cal I}\,$ (see Holdaway, 1990 for an algorithm).


next up previous contents
Next: CLEAN Up: The Generic Interferometer: II Image Solvers AIPS++ Implementation Previous: Projection Onto Convex Sets   Contents
Please send questions or comments about AIPS++ to aips2-request@nrao.edu.
Copyright © 1995-2000 Associated Universities Inc., Washington, D.C.

Return to AIPS++ Home Page
2006-03-28