Getting Started Documentation Glish Learn More Programming Contact Us
Version 1.9 Build 1556
News FAQ
Search Home


next up previous contents
Up: The MEASUREMENT EQUATION of a generic radio telescope Previous: Bibliography

Subsections



APPENDIX: CONVENTIONS

A consistent nomenclature and precise definitions are extremely important for a software package like AIPS++, which aspires to be a `world reduction package', and to which workers with a large spacetime separation are supposed to contribute. One of the most sensitive areas in this respect is the Measurement Equation, which underlies the central subject of uv-calibration and imaging.

However, it is not easy to define, adopt and enforce the use of a suitable set of conventions. This appendix is a hopefully useful step in that process. It proposes coordinate conventions and some definitions (notably the one for feed!), and lists symbols that have been defined in a separate TeX file (referred to as \include(megi-symbols) in this LaTeX document). The TeX syntax is shown in small print (e.g. \FeedI), for easy reference.


Some definitions

The following definitions are displayed in a distinctive font throughout the text of this document in order to emphasize that they have been defined explicitly.


Labels, sub- and super-scripts



  

$ \sf i$,$ \sf j$ \FeedI,\FeedJ feed labels 
$ \sf a$,$ \sf b$ \RcpA,\RcpB receptor labels, two per feed
$ \sf p$,$ \sf q$ \IFP,\IFQ IF-channel labels,two per feed
$ \sf r$,$ \sf l$ \RPol,\LPol circular polarisation (right, left) 
$ \sf x$,$ \sf y$ \XPol,\YPol linear polarisation (N-S, E-W) 
 
A+, A$\scriptstyle \odot$ A\ssLin,A\ssCir superscripts for linear and circular polarisation 
A$\scriptstyle \sf i$, A$\scriptstyle \sf i$$\scriptstyle \sf j$ A\ssI,A\ssIJ feed subscripts

The subscript convention of matrix elements is as follows: $ \sf Y_{{\sf i}{\sf b}{\sf p}}^{}$ refers to a matrix element of matrix $ \sf Y$ for feed $ \sf i$, which models the coupling of the signal going from receptor $ \sf b$ to IF-channel $ \sf p$.


Coordinate frames

Fig 1 gives an overview of the coordinate system(s) used. All angles on the Sky are measured counter-clockwise, i.e. in the direction North through East. When relevant, `axis' means `positive axis' (e.g. the positive $ \sf x$-axis). It is important to make a distinction between:

The beam frame(s): In order to calculate the effects of the primary beam on the signal of a source in direction $ \vec{\rho}\,$($ \sf l$,$ \sf m$), the shape and position of the voltage beams of each receptor on the Sky has to be calculated. For fully steerable parabolic antennas, which have constant beamshapes, this can be done most conveniently in coordinate frames defined by the projected position angles of the receptors. To allow for the fact that the two beams of a feed are closely coupled, an intermediate feed-frame is defined also.

The electrical frame: For the polarisation of the signal, the only relevant parameters are the projected angles w.r.t. the `electrical' axes $ \sf x$ and $ \sf y$ defined by the IAU.

NB: In order to see that two frames are needed, consider that Faraday rotation rotates the electric vector, but not the beam on the sky.



  

Frame of the entire telescope (single dish or array): 
$ \vec{r}\,$ \vvAntPos Projected feed (receptor?) position vector  
$ \sf u$,$ \sf v$,$ \sf w$ \ccU,\ccV,\ccW Projected baseline coordinates  
$ \vec{u}\,$ \vvUVW Projected baseline vector $ \vec{u}\,$($ \sf u$,$ \sf v$,$ \sf w$)  
 
Electrical frame on the sky (IAU definition): 
$ \sf x$,$ \sf y$ \ccX,\ccY IAU electrical frame on the sky.  
$ \sf z$ \ccZ propagation direction of incident field.  
$ \gamma_{{\sf x}{\sf y}}$ \aaXY Angle from $ \sf x$-axis to $ \sf y$-axis (= $ \pi$/2) 
$ \sf x$,$ \sf y$ \ccXPol,\ccYPol linear polarisation coordinates.  
$ \sf r$,$ \sf l$ \ccRPol,\ccLPol circular polarisation coordinates.  
 
Sky frame (w.r.t. fringe stopping centre): 
$ \sf l$,$ \sf m$,$ \sf n$ \ccL,\ccM,\ccN Coordinates (direction cosines) 
$ \vec{\rho}\,$ \vvLMN Source direction vector $ \vec{\rho}\,$($ \sf l$,$ \sf m$)  
$ \vec{\rho}_{ftc}$ \vvFTC Fringe Tracking Centre $ \vec{\rho}_{ftc}$(RA, DEC,$ \sf f$)  
$ \vec{\rho}_{mc}$ \vvMC Map Centre $ \vec{\rho}_{ftc}$($ \sf l$,$ \sf m$)  
$ \gamma_{{\sf l}{\sf m}}$ \aaLM Angle from $ \sf l$-axis to $ \sf m$-axis (= $ \pi$/2) 
$ \gamma_{{\sf l}{\sf x}}$ \aaLX Angle from $ \sf l$-axis to $ \sf x$-axis (= $ \pi$/2) 
 
Coordinate frame of feed $ \sf i$, projected on the sky: 
$ \sf l^{'}_{{\sf i}}$,$ \sf m^{'}_{{\sf i}}$ \ccLI,\ccMI Coordinates 
$ \sf l_{{\sf i}{0}}^{}$,$ \sf m_{{\sf i}{0}}^{}$ \ccLIO,\ccMIO Origin ( $ \sf l$,$ \sf m$) of feed-frame. 
$ \gamma_{{\sf l}{\sf i}}$ \aaLI Angle from $ \sf l$-axis to $ \sf l^{'}_{{\sf i}}$-axis 
$ \gamma_{{\sf x}{\sf i}}$ \aaXI Angle from $ \sf x$-axis to $ \sf l^{'}_{{\sf i}}$-axis ( = -$ \gamma_{{\sf l}{\sf x}}$+$ \gamma_{{\sf l}{\sf i}}$
 
Coordinate frame of receptor $ \sf a$ of feed $ \sf i$, projected on the sky: 
$ \sf l^{''}_{{{\sf i}{\sf a}}}$,$ \sf m^{''}_{{{\sf i}{\sf a}}}$ \ccLIA,\ccMIA Coordinates 
$ \sf l^{'}_{{\sf i}}_{{\sf a}{0}}$,$ \sf m^{'}_{{\sf i}}_{{\sf a}{0}}$ \ccLIAO,\ccMIAO Origin ( $ \sf l^{'}_{{\sf i}}$,$ \sf m^{'}_{{\sf i}}$) of receptor-frame. 
$ \gamma_{{\sf i}{\sf a}}$ \aaIA Angle from $ \sf l^{'}_{{\sf i}}$-axis to $ \sf l^{''}_{{{\sf i}{\sf a}}}$-axis 
$ \gamma_{{\sf x}{\sf a}}$ \aaXA Angle from $ \sf x$-axis to $ \sf l^{''}_{{{\sf i}{\sf a}}}$-axis ( = -$ \gamma_{{\sf l}{\sf x}}$+$ \gamma_{{\sf l}{\sf i}}$+$ \gamma_{{\sf i}{\sf a}}$
 
Coordinate frame of receptor $ \sf b$ of feed $ \sf i$, projected on the sky: 
$ \sf l^{''}_{{{\sf i}{\sf b}}}$,$ \sf m^{''}_{{{\sf i}{\sf b}}}$ \ccLIB,\ccMIB Coordinates  
$ \sf l^{'}_{{\sf i}}_{{\sf b}{0}}$,$ \sf m^{'}_{{\sf i}}_{{\sf b}{0}}$ \ccLIBO,\ccMIBO Origin ( $ \sf l^{'}_{{\sf i}}$,$ \sf m^{'}_{{\sf i}}$) of receptor-frame. 
$ \gamma_{{\sf i}{\sf b}}$ \aaIB Angle from $ \sf l^{'}_{{\sf i}}$-axis to $ \sf l^{''}_{{{\sf i}{\sf b}}}$-axis 
$ \gamma_{{\sf y}{\sf b}}$ \aaYB Angle from $ \sf y$-axis (!) to $ \sf l^{''}_{{{\sf i}{\sf b}}}$-axis ( = -$ \gamma_{{\sf x}{\sf y}}$-$ \gamma_{{\sf l}{\sf x}}$+$ \gamma_{{\sf l}{\sf i}}$+$ \gamma_{{\sf i}{\sf b}}$)

Figure 1: Label: fig-coord  File: fig-coord.eps
\begin{figure}\begin{center}
\epsfxsize=16truecm
\epsfysize=12truecm
\leavevm...
...mphasise that they do not
necessarily coincide.
\par
}\end{center}
\end{figure}

The coordinates $ \sf l^{''}_{{{\sf i}{\sf a}}}$,$ \sf m^{''}_{{{\sf i}{\sf a}}}$ and $ \sf l^{''}_{{{\sf i}{\sf b}}}$,$ \sf m^{''}_{{{\sf i}{\sf b}}}$ of the frames of receptors $ \sf a$ and $ \sf b$ in equ 37 are related to the celestial coordinate frame $ \sf l$,$ \sf m$ in a two-step process. First we define an intermediate feed-frame $ \sf l^{'}_{{\sf i}}$,$ \sf m^{'}_{{\sf i}}$ for feed $ \sf i$, projected on the Sky:

$\displaystyle \left(\vphantom{\begin{array}{c}
{{\sf l}^{'}_{{\sf i}}}\\
{{\sf m}^{'}_{{\sf i}}}\\
\end{array}}\right.$$\displaystyle \begin{array}{c}
{{\sf l}^{'}_{{\sf i}}}\\
{{\sf m}^{'}_{{\sf i}}}\\
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c}
{{\sf l}^{'}_{{\sf i}}}\\
{{\sf m}^{'}_{{\sf i}}}\\
\end{array}}\right)$  =  $\displaystyle \sf Rot$($\displaystyle \gamma_{{\sf l}{\sf i}}$)$\displaystyle \left(\vphantom{\begin{array}{c}
{\sf l}- {{\sf l}_{{\sf i}{0}}}\\
{\sf m}- {{\sf m}_{{\sf i}{0}}}\\
\end{array}}\right.$$\displaystyle \begin{array}{c}
{\sf l}- {{\sf l}_{{\sf i}{0}}}\\
{\sf m}- {{\sf m}_{{\sf i}{0}}}\\
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c}
{\sf l}- {{\sf l}_{{\sf i}{0}}}\\
{\sf m}- {{\sf m}_{{\sf i}{0}}}\\
\end{array}}\right)$ (54)

in which ($ \sf l_{{\sf i}{0}}^{}$,$ \sf m_{{\sf i}{0}}^{}$) is the Pointing Centre of feed $ \sf i$, and $ \sf Rot$($ \gamma_{{\sf l}{\sf i}}$) is a rotation over the projected angle $ \gamma_{{\sf l}{\sf i}}$ between the positive $ \sf l$-axis of the Sky frame and the $ \sf l^{'}_{{\sf i}}$-axis of the feed-frame.

The voltage beams themselves are best modelled in a receptor-frame (see equ 37), again projected on the Sky. For receptor $ \sf a$ we have:

$\displaystyle \left(\vphantom{\begin{array}{c}
{{\sf l}^{''}_{{{\sf i}{\sf a}}}}\\
{{\sf m}^{''}_{{{\sf i}{\sf a}}}}\\
\end{array}}\right.$$\displaystyle \begin{array}{c}
{{\sf l}^{''}_{{{\sf i}{\sf a}}}}\\
{{\sf m}^{''}_{{{\sf i}{\sf a}}}}\\
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c}
{{\sf l}^{''}_{{{\sf i}{\sf a}}}}\\
{{\sf m}^{''}_{{{\sf i}{\sf a}}}}\\
\end{array}}\right)$  =  $\displaystyle \sf Rot$($\displaystyle \gamma_{{\sf i}{\sf a}}$)$\displaystyle \left(\vphantom{\begin{array}{c}
{{\sf l}^{'}_{{\sf i}}}- {{{\sf...
...{'}_{{\sf i}}}- {{{\sf m}^{'}_{{\sf i}}}_{{\sf a}{0}}}\\
\end{array}}\right.$$\displaystyle \begin{array}{c}
{{\sf l}^{'}_{{\sf i}}}- {{{\sf l}^{'}_{{\sf i}...
...{\sf m}^{'}_{{\sf i}}}- {{{\sf m}^{'}_{{\sf i}}}_{{\sf a}{0}}}\\
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c}
{{\sf l}^{'}_{{\sf i}}}- {{{\sf...
...{'}_{{\sf i}}}- {{{\sf m}^{'}_{{\sf i}}}_{{\sf a}{0}}}\\
\end{array}}\right)$ (55)

The matrix $ \sf Rot$($ \gamma_{{\sf i}{\sf a}}$) represents a rotation over the angle $ \gamma_{{\sf i}{\sf a}}$ between the positive $ \sf l^{'}_{{\sf i}}$-axis of the feed-frame and the $ \sf l^{''}_{{{\sf i}{\sf a}}}$-axis of the relevant receptor-frame. For receptor $ \sf b$:

$\displaystyle \left(\vphantom{\begin{array}{c}
{{\sf l}^{''}_{{{\sf i}{\sf b}}}}\\
{{\sf m}^{''}_{{{\sf i}{\sf b}}}}\\
\end{array}}\right.$$\displaystyle \begin{array}{c}
{{\sf l}^{''}_{{{\sf i}{\sf b}}}}\\
{{\sf m}^{''}_{{{\sf i}{\sf b}}}}\\
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c}
{{\sf l}^{''}_{{{\sf i}{\sf b}}}}\\
{{\sf m}^{''}_{{{\sf i}{\sf b}}}}\\
\end{array}}\right)$  =  $\displaystyle \sf Rot$($\displaystyle \gamma_{{\sf i}{\sf b}}$)$\displaystyle \left(\vphantom{\begin{array}{c}
{{\sf l}^{'}_{{\sf i}}}- {{{\sf...
...{'}_{{\sf i}}}- {{{\sf m}^{'}_{{\sf i}}}_{{\sf b}{0}}}\\
\end{array}}\right.$$\displaystyle \begin{array}{c}
{{\sf l}^{'}_{{\sf i}}}- {{{\sf l}^{'}_{{\sf i}...
...{\sf m}^{'}_{{\sf i}}}- {{{\sf m}^{'}_{{\sf i}}}_{{\sf b}{0}}}\\
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c}
{{\sf l}^{'}_{{\sf i}}}- {{{\sf...
...{'}_{{\sf i}}}- {{{\sf m}^{'}_{{\sf i}}}_{{\sf b}{0}}}\\
\end{array}}\right)$ (56)

($ \sf l^{'}_{{\sf i}}_{{\sf a}{0}}$,$ \sf m^{'}_{{\sf i}}_{{\sf a}{0}}$) and ($ \sf l^{'}_{{\sf i}}_{{\sf b}{0}}$,$ \sf m^{'}_{{\sf i}}_{{\sf b}{0}}$) represent pointing offsets of receptor $ \sf a$ and $ \sf b$ respectively. These can be used to model `beam-squint' of feeds that are not axially symmetric.


Matrices and vectors

The following matrices and vectors play a role in the Measurement Equation:



  

$ \vec{I}\,$ \vvIQUV Stokes vector of the source (I,Q,U,V). 
$ \vec{V}\,$,$ \sf v$ \vvCoh,\vvCohEl Coherency vector, and one of its elements. 
 
$ \sf S$ \mmStokes Stokes matrix, conversion between polarisation representations. 
$ \sf S^{+}_{}$ \mmStokes\ssLin Conversion to linear representation. 
$ \sf S^{\odot}_{}$ \mmStokes\ssCir Conversion to circular representation. 
 
$ \cal {M}$ \mmMueller Mueller matrix: Stokes to Stokes through optical `element' 
 
$ \sf X$,$ \sf x$ \mmXifr,\mmXifrEl Correlator matrix (4 x 4). 
$ \sf M$,$ \sf m$ \mmMifr,\mmMifrEl Multiplicative interferometer-based gain matrix (4 x 4). 
$ \vec{A}\,$,$ \sf a$ \vvAifr,\vvAifrEl Additive interferometer-based gain vector.

The following feed-based Jones matrices (2 x 2) have a well-defined meaning:



  

$ \sf J$,$ \sf j$ \mjJones,\mjJonesEl Jones matrix, and one of its elements. 
 
$ \sf F$,$ \sf f$ \mjFrot,\mjFrotEl Faraday rotation (of the plane of linear pol.) 
$ \sf T$,$ \sf t$ \mjTrop,\mjTropEl Atmospheric gain (refraction, extinction). 
$ \sf P$,$ \sf p$ \mjProj,\mjProjEl Projected receptor angle(s) w.r.t. $ \sf x$,$ \sf y$ frame 
$ \sf B$,$ \sf b$ \mjBtot,\mjBtotEl Total feed voltage pattern (i.e. $ \sf B$  =  $ \sf D$ $ \sf E$ $ \sf P$
$ \sf E$,$ \sf e$ \mjBeam,\mjBeamEl Traditional feed voltage beam. 
$ \sf C$,$ \sf c$ \mjConf,\mjConfEl Feed configuration matrix (...). 
$ \sf D$,$ \sf d$ \mjDrcp,\mjDrcpEl Leakage between receptors $ \sf a$ and $ \sf b$
$ \sf H$,$ \sf h$ \mjHybr,\mjHybrEl Hybrid network, to convert to circular pol. 
$ \sf G$,$ \sf g$ \mjGrec,\mjGrecEl feed-based electronic gain. 
$ \sf K$,$ \sf k$ \mjKern,\mjKernEl Fourier Transform Kernel (baseline phase weight) 
$ \sf K^{0}_{}$,$ \sf k^{0}_{}$ \mjKref,\mjKrefEl FT kernel for the fringe-stopping centre. 
$ \sf K^{'}_{}$,$ \sf k^{'}_{}$ \mjKoff,\mjKoffEl FT kernel relative to the fringe-stopping centre. 
$ \sf Q$,$ \sf q$ \mjQsum,\mjQsumEl Electronic gain of tied-array feed after summing. 
 
Some special matrices and vectors: 
$ \sf Zero$ \mmZero Zero matrix  
$ \vec{0}\,$ \vvZero Zero vector  
$ \cal {U}$ \mmUnit Unit matrix

 
$ \sf Diag$(a, b) \mjDiag Diagonal matrix with elements a, b 
$ \sf Mult$(a) \mjMult Multiplication with factor a 
$ \sf Rot$($ \alpha$[,$ \beta$]) \mjRot [pseudo] Rotation over an angle $ \alpha$, $ \beta$ 
$ \sf Ell$($ \alpha$[,$ \beta$]) \mjEll Ellipticity angle[s] $ \alpha$, $ \beta$ 
$ \cal {H}$ \mjLtoC Signal conversion from linear to circular. 
$ \cal {H}$-1 \mjCtoL Signal conversion from circular to linear.

Definitions of some special matrices:

$\displaystyle \sf Diag$(a, b$\displaystyle \equiv$  $\displaystyle \left(\vphantom{\begin{array}{cc}a & 0\\  0 & b \end{array}}\right.$$\displaystyle \begin{array}{cc}a & 0\\  0 & b \end{array}$ $\displaystyle \left.\vphantom{\begin{array}{cc}a & 0\\  0 & b \end{array}}\right)$              $\displaystyle \sf Diag$(a, a)  =  $\displaystyle \sf Mult$(a)  = a $\displaystyle \left(\vphantom{\begin{array}{cc}1 & 0\\  0 & 1 \end{array}}\right.$$\displaystyle \begin{array}{cc}1 & 0\\  0 & 1 \end{array}$ $\displaystyle \left.\vphantom{\begin{array}{cc}1 & 0\\  0 & 1 \end{array}}\right)$ (57)

A `pure' rotation $ \sf Rot$($ \alpha$) is a special case of a `pseudo rotation' $ \sf Rot$($ \alpha$,$ \beta$):

$\displaystyle \sf Rot$($\displaystyle \alpha$,$\displaystyle \beta$$\displaystyle \equiv$  $\displaystyle \left(\vphantom{\begin{array}{cc}\cos\alpha & -\sin\alpha\\  \sin\beta & \cos\beta \end{array}}\right.$$\displaystyle \begin{array}{cc}\cos\alpha & -\sin\alpha\\  \sin\beta & \cos\beta \end{array}$ $\displaystyle \left.\vphantom{\begin{array}{cc}\cos\alpha & -\sin\alpha\\  \sin\beta & \cos\beta \end{array}}\right)$              $\displaystyle \sf Rot$($\displaystyle \alpha$$\displaystyle \equiv$  $\displaystyle \sf Rot$($\displaystyle \alpha$,$\displaystyle \alpha$)  =  $\displaystyle \left(\vphantom{\begin{array}{cc}\cos\alpha & -\sin\alpha\\  \sin\alpha & \cos\alpha \end{array}}\right.$$\displaystyle \begin{array}{cc}\cos\alpha & -\sin\alpha\\  \sin\alpha & \cos\alpha \end{array}$ $\displaystyle \left.\vphantom{\begin{array}{cc}\cos\alpha & -\sin\alpha\\  \sin\alpha & \cos\alpha \end{array}}\right)$ (58)

Ellipticity:

$\displaystyle \sf Ell$($\displaystyle \alpha$,$\displaystyle \beta$$\displaystyle \equiv$  $\displaystyle \left(\vphantom{\begin{array}{cc}\cos\alpha & i\sin\alpha\\  -i\sin\beta & \cos\beta \end{array}}\right.$$\displaystyle \begin{array}{cc}\cos\alpha & i\sin\alpha\\  -i\sin\beta & \cos\beta \end{array}$ $\displaystyle \left.\vphantom{\begin{array}{cc}\cos\alpha & i\sin\alpha\\  -i\sin\beta & \cos\beta \end{array}}\right)$              $\displaystyle \sf Ell$($\displaystyle \alpha$$\displaystyle \equiv$  $\displaystyle \sf Ell$($\displaystyle \alpha$, - $\displaystyle \alpha$)  =  $\displaystyle \left(\vphantom{\begin{array}{cc}\cos\alpha & i\sin\alpha\\  i\sin\alpha & \cos\alpha \end{array}}\right.$$\displaystyle \begin{array}{cc}\cos\alpha & i\sin\alpha\\  i\sin\alpha & \cos\alpha \end{array}$ $\displaystyle \left.\vphantom{\begin{array}{cc}\cos\alpha & i\sin\alpha\\  i\sin\alpha & \cos\alpha \end{array}}\right)$ (59)


Miscellaneous parameters



  

$ \beta$ \ppParall Parallactic angle, form North pole to zenith 
HA \ppHA Hour Angle 
RA \ppRA Right Ascension  
DEC \ppDEC Declination  
LAT \ppLAT Latitude on Earth 
 
$ \sf t$ \ccT Time 
$ \sf f$ \ccF Frequency 
 
$ \chi$ \ppFarad Faraday rotation angle

 
a \ppAmpl Amplitude 
$ \psi$ \ppPhase Phase 
$ \zeta$ \ppPhaseZero Phase zero 
$ \phi$ \ppRcpPosDev Dipole position angle error 
$ \theta$ \ppRcpEllDev receptor ellipticity


next up previous contents
Up: The MEASUREMENT EQUATION of a generic radio telescope Previous: Bibliography   Contents
Please send questions or comments about AIPS++ to aips2-request@nrao.edu.
Copyright © 1995-2000 Associated Universities Inc., Washington, D.C.

Return to AIPS++ Home Page
2006-10-15