casa  5.7.0-16
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
TiledDataStMan.h
Go to the documentation of this file.
1 //# TiledDataStMan.h: Tiled Data Storage Manager
2 //# Copyright (C) 1995,1996,1997,1999,2001
3 //# Associated Universities, Inc. Washington DC, USA.
4 //#
5 //# This library is free software; you can redistribute it and/or modify it
6 //# under the terms of the GNU Library General Public License as published by
7 //# the Free Software Foundation; either version 2 of the License, or (at your
8 //# option) any later version.
9 //#
10 //# This library is distributed in the hope that it will be useful, but WITHOUT
11 //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
13 //# License for more details.
14 //#
15 //# You should have received a copy of the GNU Library General Public License
16 //# along with this library; if not, write to the Free Software Foundation,
17 //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
18 //#
19 //# Correspondence concerning AIPS++ should be addressed as follows:
20 //# Internet email: aips2-request@nrao.edu.
21 //# Postal address: AIPS++ Project Office
22 //# National Radio Astronomy Observatory
23 //# 520 Edgemont Road
24 //# Charlottesville, VA 22903-2475 USA
25 //#
26 //# $Id$
27 
28 #ifndef TABLES_TILEDDATASTMAN_H
29 #define TABLES_TILEDDATASTMAN_H
30 
31 //# Includes
32 #include <casacore/casa/aips.h>
36 
37 namespace casacore { //# NAMESPACE CASACORE - BEGIN
38 
39 //# Forward Declarations
40 
41 
42 // <summary>
43 // Tiled Data Storage Manager.
44 // </summary>
45 
46 // <use visibility=export>
47 
48 // <reviewed reviewer="UNKNOWN" date="before2004/08/25" tests="">
49 // </reviewed>
50 
51 // <prerequisite>
52 //# Classes you should understand before using this one.
53 // <li> <linkto class=TiledStMan>TiledStMan</linkto>
54 // <li> <linkto class=TSMCube>TSMCube</linkto>
55 // <li> <linkto class=ROTiledStManAccessor>ROTiledStManAccessor</linkto>
56 // for a discussion of the maximum cache size
57 // <li> <linkto class=Record>Record</linkto>
58 // </prerequisite>
59 
60 // <etymology>
61 // TiledDataStMan is the Tiled Storage Manager for general
62 // data arrays.
63 // </etymology>
64 
65 // <synopsis>
66 // TiledDataStMan is a derivation from TiledStMan, the abstract
67 // tiled storage manager class. A description of the basics
68 // of tiled storage managers is given in the
69 // <linkto module=Tables:TiledStMan>Tables module</linkto> description.
70 // <p>
71 // TiledDataStMan allows the user explicit control over the
72 // definition and extension of hypercubes by means of the accessor
73 // class <linkto class=TiledDataStManAccessor>TiledDataStManAccessor</linkto>.
74 // The user can determine which row should be put in which hypercube,
75 // so it is possible to put row 0-9 in hypercube A, row 10-29 in B,
76 // row 30-39 in A again, etc.. This makes it possible to use a tiled
77 // storage manager for a data column containing data with
78 // different shapes (e.g. line and continuum data). Actually,
79 // this storage manager is developed for irregularly shaped
80 // UV-data, but can be used for any purpose.
81 // <br>
82 // Each extensible hypercube uses a file of its own. This means that there
83 // shouldn't be too many of them, otherwise the number of files may
84 // get too high.
85 // <p>
86 // The TiledDataStMan has the following (extra) properties:
87 // <ul>
88 // <li> When multiple hypercubes are used, one or more id columns have
89 // to be used to differentiate between them. The id values must
90 // be defined when the hypercube gets added; they cannot be put
91 // explicitly.
92 // <li> A hypercube can be extensible in its last dimension by setting
93 // its last dimension to zero. In that case extendHypercube can
94 // be used to extend the hypercube when needed.
95 // All fixed sized hypercubes are stored in one file, while there
96 // is one file per extensible hypercube.
97 // <li> The table must be large enough to accommodate the addition
98 // or extension of a hypercube. This means that a sufficient
99 // number of rows must be added to the table before a hypercube
100 // can be added or extended. It is the responsibility of the user
101 // to "synchronize" addition of rows and hypercubes.
102 // <li> It is possible to define coordinates for the hypercube axes
103 // in several ways:
104 // <ul>
105 // <li> Use the TiledDataStMan storage manager to hold their values
106 // and define the coordinates when adding or extending the
107 // hypercube. This is the preferred way.
108 // <li> As above, but use explicit puts to write their values.
109 // This has to be used when coordinates are defined after
110 // the hypercube has been added or extended.
111 // Note that several rows may share the same value, so
112 // overwriting a value may affect multiple rows.
113 // <li> Use another storage manager to hold their values.
114 // This is useful when their values depend on other axes,
115 // because that cannot be handled by TiledDataStMan.
116 // </ul>
117 // Note that it is possible to store one coordinate column with
118 // TiledDataStMan and another with another storage manager.
119 // </ul>
120 // </synopsis>
121 
122 // <motivation>
123 // This tiled storage manager allows one to create and extend hypercubes
124 // as needed. One has complete control over which row is stored in which
125 // hypercube.
126 // </motivation>
127 
128 // <example>
129 // The following example shows how to create a TiledDataStMan tiled
130 // storage manager using the hypercolumn as defined in the table description.
131 // Furthermore it shows how to use TiledDataStManAccessor
132 // to add a hypercube, while defining its tile shape, coordinates,
133 // and id-value.
134 // The example shows that reading the data back does not require any knowledge
135 // of the data manager. It's exactly the same if another data manager was used.
136 // <br>
137 // The table created contains the equally shaped data columns "Data" and
138 // "Weight".
139 // Each cell in those columns contains a 2D array with shape [12,20]. The
140 // coordinates of those arrays are "Pol" and "Freq".
141 // The tiled storage manager superimposes two more axes ("Baseline"and "Time")
142 // on the data resulting in a 4D hypercube with shape [12,20,30,42].
143 // The table contains 42*30 rows (which has to be equal to the number of
144 // elements in the superimposed axes).
145 // <br>
146 // The tile shape of the hypercube is (arbitrarily) set to [4,5,6,7].
147 // Of course, any tile shape could be chosen. This tile shape results
148 // in a tile size of 6720 bytes (4*5*6*7 *(4+4) bytes), which is not
149 // that large (32768 as tile size is very reasonable). The number of tiles
150 // is integral in each dimension, so no space is wasted.
151 // Finally it makes access along the various axes about equally efficient.
152 // <br>
153 // Although in this example only one hypercube is added, multiple hypercubes
154 // are possible, because an id column has been defined.
155 // <note role=caution>
156 // The example uses the global Array function indgen to fill the data
157 // and coordinate arrays with arbitrary values.
158 // </note>
159 // Note that the description of class
160 // <linkto class=ROTiledStManAccessor>ROTiledStManAccessor</linkto>
161 // contains a discussion about the effect of setting the maximum cache size.
162 //
163 // <srcblock>
164 // // Define the table description and the columns in it.
165 // TableDesc td ("", "1", TableDesc::Scratch);
166 // td.addColumn (ScalarColumnDesc<float> ("Time"));
167 // td.addColumn (ScalarColumnDesc<float> ("Baseline"));
168 // td.addColumn (ArrayColumnDesc<float> ("Pol", 1));
169 // td.addColumn (ArrayColumnDesc<float> ("Freq", 1));
170 // td.addColumn (ScalarColumnDesc<String> ("Id"));
171 // td.addColumn (ArrayColumnDesc<float> ("Data", 2));
172 // td.addColumn (ArrayColumnDesc<float> ("Weight", 2));
173 // // Define the 4-dim hypercolumn with its data, coordinate and id columns.
174 // td.defineHypercolumn ("TSMExample",
175 // 4,
176 // stringToVector ("Data,Weight"),
177 // stringToVector ("Pol,Freq,Baseline,Time"),
178 // stringToVector ("Id"));
179 //
180 // // Now create a new table from the description.
181 // SetupNewTable newtab("tTiledDataStMan_tmp.data", td, Table::New);
182 // // Create a TiledDataStMan storage manager for the hypercolumn
183 // // and bind the columns to it.
184 // TiledDataStMan sm1 ("TSMExample");
185 // newtab.bindAll (sm1);
186 // // Create the table with 42*30 rows.
187 // Table table(newtab, 42*30);
188 // // Create the accessor to be able to add a hypercube to this
189 // // storage manager.
190 // TiledDataStManAccessor accessor(table, "TSMExample");
191 // // Define the values for the coordinates of the hypercube
192 // // and put them into the record.
193 // Vector<float> timeValues(42);
194 // Vector<float> baselineValues(30);
195 // Vector<float> freqValues(20);
196 // Vector<float> polValues(12);
197 // indgen (timeValues);
198 // indgen (baselineValues, float(100));
199 // indgen (freqValues, float(200));
200 // indgen (polValues, float(300));
201 // Record hyperDef;
202 // hyperDef.define ("Time", timeValues);
203 // hyperDef.define ("Baseline", baselineValues);
204 // hyperDef.define ("Freq", freqValues);
205 // hyperDef.define ("Pol", polValues);
206 // // Define the id value as well.
207 // hyperDef.define ("Id", "");
208 // // Now add the hypercube with the given shape, tile shape,
209 // // and coordinate and id values.
210 // accessor.addHypercube (IPosition(4,12,20,30,42),
211 // IPosition(4,4,5,6,7), hyperDef);
212 // ArrayColumn<float> data (table, "Data");
213 // ArrayColumn<float> weight (table, "Weight");
214 // Matrix<float> array(IPosition(2,12,20));
215 // uInt i;
216 // indgen (array);
217 // // Write some data into the data columns.
218 // for (i=0; i<30*42; i++) {
219 // data.put (i, array);
220 // weight.put (i, array+float(100));
221 // array += float(200);
222 // }
223 // // Prepare for reading the data back.
224 // // Note that time and baseline are in fact scalar columns. They are
225 // // superimposed dimensions on the hypercube.
226 // ScalarColumn<float> time (table, "Time");
227 // ScalarColumn<float> baseline (table, "Baseline");
228 // ArrayColumn<float> freq (table, "Freq");
229 // ArrayColumn<float> pol (table, "Pol");
230 // ScalarColumn<String> id (table, "Id");
231 // float fValue;
232 // String sValue;
233 // for (i=0; i<table.nrow(); i++) {
234 // data.get (i, array);
235 // weight.get (i, array);
236 // pol.get (i, polValues);
237 // freq.get (i, freqValues);
238 // baseline.get (i, fValue);
239 // time.get (i, fValue);
240 // id.get (i, sValue);
241 // }
242 // </srcblock>
243 // Note that in this example an id column was not necessary, because
244 // there is only one hypercube.
245 // <p>
246 // The following example is more advanced. Two (extensible) hypercubes
247 // are used for line and continuum data. Writing such a data set
248 // could be done as shown. Reading it back is the same as above.
249 // <br>
250 // In this example the data columns contain line and continuum data.
251 // So there are two types of data, each with their own shape and
252 // stored in their own (extensible) hypercube. Note that the last
253 // dimension of the hypercube shape is set to zero (to make extensible),
254 // but the last tile shape dimension has been filled in,
255 // because the exact tile shape must be known.
256 // <br>
257 // Before each put of the data the appropriate hypercube is extended.
258 // Also the time has to be put, which is done (as an example) in
259 // two different ways (using an explicit put and using the extendHypercube).
260 //
261 // <srcblock>
262 // // Defining TableDesc and storage manager is same as in first example.
263 // // Create the table.
264 // Table table(newtab);
265 // // Create the accessor to be able to add the hypercubes to this
266 // // storage manager.
267 // TiledDataStManAccessor accessor(table, "TSMExample");
268 // // Fill the coordinate values.
269 // // Note that the time axis of the hypercube will have length 0 to
270 // // make it extensible. Therefore the time coordinate can only be
271 // // filled in when the hypercube is extended.
272 // Vector<float> baselineValues(30);
273 // Vector<float> freqValuesCont(1);
274 // Vector<float> freqValuesLine(20);
275 // Vector<float> polValues(4);
276 // indgen (baselineValues, float(100));
277 // indgen (freqValuesLine, float(200));
278 // indgen (freqValuesCont, float(200));
279 // indgen (polValues, float(300));
280 // Record hyperDefLine;
281 // hyperDefLine.define ("Baseline", baselineValues);
282 // hyperDefLine.define ("Pol", polValues);
283 // // Make similar record for line data.
284 // // Fill the correct id and frequency values for each type.
285 // // Add the 2 hypercubes.
286 // Record hyperDefCont (hyperDefLine);
287 // hyperDefLine.define ("Id", "L");
288 // hyperDefLine.define ("Freq", freqValuesLine);
289 // hyperDefCont.define ("Id", "C");
290 // hyperDefCont.define ("Freq", freqValuesCont);
291 // // Add the hypercubes.
292 // // Define their last dimension as zero to make them extensible.
293 // accessor.addHypercube (IPosition(4,4,20,30,0),
294 // IPosition(4,4,5,6,7), hyperDefLine);
295 // accessor.addHypercube (IPosition(4,4,1,30,0),
296 // IPosition(4,4,1,6,7), hyperDefCont);
297 // ScalarColumn<float> time (table, "Time");
298 // ScalarColumn<float> baseline (table, "Baseline");
299 // ArrayColumn<float> freq (table, "Freq");
300 // ArrayColumn<float> pol (table, "Pol");
301 // ArrayColumn<float> data (table, "Data");
302 // ArrayColumn<float> weight (table, "Weight");
303 // Matrix<float> arrayLine(IPosition(2,4,20));
304 // Matrix<float> arrayCont(IPosition(2,4,1));
305 // indgen (arrayLine);
306 // indgen (arrayCont);
307 // // Write some data into the data columns.
308 // // Alternately line and continuum is written.
309 // // Each hypercube requires 30 rows to be added (i.e. nr of baselines).
310 // // The last dimension of each hypercube is extended with 1.
311 // uInt i, j;
312 // uInt rownr = 0;
313 // for (i=0; i<42; i++) {
314 // if (i%2 == 0) {
315 // table.addRow (30);
316 // accessor.extendHypercube (1, hyperDefLine);
317 // time.put (rownr, float(i));
318 // for (j=0; j<30; j++) {
319 // data.put (rownr, arrayLine);
320 // weight.put (rownr, arrayLine);
321 // rownr++;
322 // }
323 // }else{
324 // table.addRow (30);
325 // Vector<float> timeValue(1);
326 // timeValue(0) = float(i);
327 // hyperDefCont.define ("Time", timeValue);
328 // accessor.extendHypercube (1, hyperDefCont);
329 // time.put (rownr, float(i));
330 // for (j=0; j<30; j++) {
331 // data.put (rownr, arrayCont);
332 // weight.put (rownr, arrayCont);
333 // rownr++;
334 // }
335 // }
336 // }
337 // </srcblock>
338 // Note that in this example the time is defined in 2 different ways.
339 // The first one by an explicit put, the second one as a record in
340 // the extendHypercube call. The second way if the preferred one,
341 // although it requires a bit more coding.
342 // </example>
343 
344 //# <todo asof="$DATE:$">
345 //# A List of bugs, limitations, extensions or planned refinements.
346 //# </todo>
347 
348 
350 {
352 
353 public:
354  // Create a TiledDataStMan storage manager for the hypercolumn
355  // with the given name.
356  // The hypercolumn name is also the name of the storage manager.
357  // The given maximum cache size (default is unlimited) is persistent,
358  // thus will be reused when the table is read back. Note that the class
359  // <linkto class=ROTiledStManAccessor>ROTiledStManAccessor</linkto>
360  // allows one to overwrite the maximum cache size temporarily.
361  // <br>The constructor taking a Record expects fields in the record with
362  // the name of the arguments in uppercase. If not defined, their
363  // default value is used.
364  // <group>
365  TiledDataStMan (const String& hypercolumnName,
366  uInt maximumCacheSize = 0);
367  TiledDataStMan (const String& hypercolumnName,
368  const Record& spec);
369  // </group>
370 
371  ~TiledDataStMan();
372 
373  // Clone this object.
374  // It does not clone TSMColumn objects possibly used.
375  DataManager* clone() const;
376 
377  // Get the type name of the data manager (i.e. TiledDataStMan).
378  String dataManagerType() const;
379 
380  // Make the object from the type name string.
381  // This function gets registered in the DataManager "constructor" map.
383  const Record& spec);
384 
385 private:
386  // Create a TiledDataStMan.
387  // This constructor is private, because it should only be used
388  // by makeObject.
389  TiledDataStMan();
390 
391  // Forbid copy constructor.
393 
394  // Forbid assignment.
396 
397  // Add rows to the storage manager.
398  // This will only increase the number of rows. When a hypercube is
399  // added or extended, it will be checked whether the number of rows
400  // is sufficient.
401  void addRow (uInt nrrow);
402 
403  // Add a hypercube.
404  // The number of rows in the table must be large enough to
405  // accommodate this hypercube.
406  // The possible id values must be given in the record, while
407  // coordinate values are optional. The field names in the record
408  // should match the coordinate and id column names.
409  // The last dimension in the cube shape can be zero, indicating that
410  // the hypercube is extensible.
411  void addHypercube (const IPosition& cubeShape,
412  const IPosition& tileShape,
413  const Record& values);
414 
415  // Extend the hypercube with the given number of elements in
416  // the last dimension.
417  // The record should contain the id values (to get the correct
418  // hypercube) and optionally coordinate values for the elements added.
419  void extendHypercube (uInt incrInLastDim, const Record& values);
420 
421  // Get the hypercube in which the given row is stored.
422  virtual TSMCube* getHypercube (uInt rownr);
423 
424  // Get the hypercube in which the given row is stored.
425  // It also returns the position of the row in that hypercube.
426  virtual TSMCube* getHypercube (uInt rownr, IPosition& position);
427 
428  // Flush and optionally fsync the data.
429  // It returns a True status if it had to flush (i.e. if data have changed).
430  virtual Bool flush (AipsIO&, Bool fsync);
431 
432  // Let the storage manager create files as needed for a new table.
433  // This allows a column with an indirect array to create its file.
434  virtual void create (uInt nrrow);
435 
436  // Read the header info.
437  virtual void readHeader (uInt nrrow, Bool firstTime);
438 
439  // Update the map of row numbers to cube number plus offset.
440  void updateRowMap (uInt cubeNr, uInt incrInLastDim);
441 
442  // Check if the table is large enough to hold this
443  // hypercube extension.
444  void checkNrrow (const IPosition& cubeShape,
445  uInt incrInLastDim) const;
446 
447 
448  //# Declare the data members.
449  // The map of row number to cube and position in cube.
453  // The nr of elements used in the map blocks.
455  // The row number since the last hypercube extension.
457 };
458 
459 
460 
461 
462 } //# NAMESPACE CASACORE - END
463 
464 #endif
A Vector of integers, for indexing into Array&lt;T&gt; objects.
Definition: IPosition.h:119
void addHypercube(const IPosition &cubeShape, const IPosition &tileShape, const Record &values)
Add a hypercube.
void checkNrrow(const IPosition &cubeShape, uInt incrInLastDim) const
Check if the table is large enough to hold this hypercube extension.
Tiled hypercube in a table.
Definition: TSMCube.h:105
virtual void create(uInt nrrow)
Let the storage manager create files as needed for a new table.
AipsIO is the object persistency mechanism of Casacore.
Definition: AipsIO.h:168
Base class for Tiled Storage Manager classes.
Definition: TiledStMan.h:107
uInt nrUsedRowMap_p
The nr of elements used in the map blocks.
void extendHypercube(uInt incrInLastDim, const Record &values)
Extend the hypercube with the given number of elements in the last dimension.
virtual TSMCube * getHypercube(uInt rownr)
Get the hypercube in which the given row is stored.
String dataManagerType() const
Get the type name of the data manager (i.e.
virtual void readHeader(uInt nrrow, Bool firstTime)
Read the header info.
A hierarchical collection of named fields of various types.
Definition: Record.h:180
bool Bool
Define the standard types used by Casacore.
Definition: aipstype.h:42
TiledDataStMan & operator=(const TiledDataStMan &)
Forbid assignment.
TiledDataStMan()
Create a TiledDataStMan.
Give access to some TiledDataStMan functions.
uInt nrrowLast_p
The row number since the last hypercube extension.
static DataManager * makeObject(const String &dataManagerType, const Record &spec)
Make the object from the type name string.
Abstract base class for a data manager.
Definition: DataManager.h:224
Tiled Data Storage Manager.
uInt maximumCacheSize() const
Get the current maximum cache size (in MiB (MibiByte)).
Definition: TiledStMan.h:533
String: the storage and methods of handling collections of characters.
Definition: String.h:223
Block< uInt > rowMap_p
The map of row number to cube and position in cube.
const IPosition & tileShape(uInt rownr) const
Get the tile shape of the data in the given row.
virtual Bool flush(AipsIO &, Bool fsync)
Flush and optionally fsync the data.
unsigned int uInt
Definition: aipstype.h:51
DataManager * clone() const
Clone this object.
void addRow(uInt nrrow)
Add rows to the storage manager.
void updateRowMap(uInt cubeNr, uInt incrInLastDim)
Update the map of row numbers to cube number plus offset.
#define casacore
&lt;X11/Intrinsic.h&gt; #defines true, false, casacore::Bool, and String.
Definition: X11Intrinsic.h:42