Getting Started Documentation Glish Learn More Programming Contact Us
Version 1.9 Build 1556
News FAQ
Search Home


next up previous contents
Next: POLARISATION COORDINATES Up: The MEASUREMENT EQUATION of a generic radio telescope Previous: THE M.E. FOR A SINGLE POINT SOURCE

Subsections



THE FULL MEASUREMENT EQUATION


Summing and averaging

For k `real' incoherent sources, observed with a `real' telescope, equ 1 becomes:

$\displaystyle \vec{V}_{{\sf i}{\sf j}}$  =  $\displaystyle {\frac{1}{\Delta{\sf t}\Delta{\sf f}}}$ $\displaystyle \int$d$\displaystyle \sf t$ $\displaystyle \int$d$\displaystyle \sf f$ $\displaystyle \sum_{{k}}^{}$ $\displaystyle {\frac{1}{\Delta{\sf l}\Delta{\sf m}}}$ $\displaystyle \int$d$\displaystyle \sf l$ d$\displaystyle \sf m$ $\displaystyle \sf J_{{\sf i}}^{}$ $\displaystyle \otimes$ $\displaystyle \sf J_{{\sf j}}^{\ast}$ $\displaystyle \sf S$ $\displaystyle \vec{I}\,$($\displaystyle \sf l$,$\displaystyle \sf m$) (6)

The visibility vector $ \vec{V}_{{\sf i}{\sf j}}$ is integrated over the extent of the sources ( $ \int$d$ \sf l$ d$ \sf m$), over the integration time ( $ \int$d$ \sf t$) and over the channel bandwidth ( $ \int$d$ \sf f$). Integration over the aperture ( $ \int$d$ \sf u$ d$ \sf v$) is taken care of by the primary beam properties.

There are only four integration coordinates, whose units are determined by the flux density units in which $ \vec{I}\,$ is expressed: energy/sec/Hz/beam. These coordinates define a 4-dimensional `integration cell'. If the variation of $ \vec{V}\,$($ \sf f$,$ \sf t$,$ \sf l$,$ \sf m$) is linear over this cell, integration is not necessary:

 $\displaystyle \vec{V}_{{\sf i}{\sf j}}$  =  $\displaystyle \sum_{k}^{}$ $\displaystyle \vec{V}_{0k}$($\displaystyle \sf f_{0}^{}$,$\displaystyle \sf t_{0}^{}$,$\displaystyle \sf l_{0}^{}$,$\displaystyle \sf m_{0}^{}$) (7)

in which $ \vec{V}_{0k}$ is the value for source k at the centre of the cell, for $ \Delta$$ \sf f$ = 1 Hz and $ \Delta$$ \sf t$ = 1 sec. If the variation of $ \vec{V}\,$($ \sf f$,$ \sf t$,$ \sf l$,$ \sf m$) over the cell can be approximated by a polynomial of order $ \leq$ 3, then it is sufficient to calculate only the 2nd derivative(s) at the centre of the cell:

 $\displaystyle \vec{V}^{int}$  =  $\displaystyle \sum_{k}^{}$ $\displaystyle \vec{V}_{0k}$  +  $\displaystyle {\textstyle\frac{1}{12}}$ ( $\displaystyle {\frac{\partial^{2}{{\vec{V}}_{0k}}}{\partial{{\sf f}}^{2}}}$ ($\displaystyle \Delta$$\displaystyle \sf f$)2  +  $\displaystyle {\frac{\partial^{2}{{\vec{V}}_{0k}}}{\partial{{\sf t}}^{2}}}$ ($\displaystyle \Delta$$\displaystyle \sf t$)2  +  $\displaystyle {\frac{\partial^{2}{{\vec{V}}_{0k}}}{\partial{{\sf l}}^{2}}}$ ($\displaystyle \Delta$$\displaystyle \sf l$)2  +  $\displaystyle {\frac{\partial^{2}{{\vec{V}}_{0k}}}{\partial{{\sf m}}^{2}}}$ ($\displaystyle \Delta$$\displaystyle \sf m$)2) (8)

Here it is assumed that the 2nd derivatives are be constant over the cell, i.e. the cross-derivatives $ {\frac{\partial{\vec{V}}_{0}}{\partial
p_1 \partial p_2}}$ are zero.


interferometer-based effects

Until now, we have assumed that all instrumental effects could be factored into feed-based contributions, i.e. we have ignored any interferometer-based effects. This is justified for a well-designed system, provided that the signal-to-noise ratio is large enough (thermal noise causes interferometer-based errors, albeit with a an average of zero). However, if systematic errors do occur, they can be modelled:

 $\displaystyle \vec{V}_{{\sf i}{\sf j}}^{'}$  =  $\displaystyle \sf X_{{\sf i}{\sf j}}^{}$ ($\displaystyle \vec{A}_{{\sf i}{\sf j}}$  +  $\displaystyle \sf M_{{\sf i}{\sf j}}^{}$ $\displaystyle \vec{V}_{{\sf i}{\sf j}}$) (9)

The 4 x 4 diagonal matrix $ \sf X$, the `Correlator matrix', represents interferometer-based corrections that are applied to the uv-data in software by the on-line system. Examples are the Van Vleck correction. In the newest correlators, it approaches a constant ($ \sf x$).

$\displaystyle \sf X_{{\sf i}{\sf j}}^{}$  =  $\displaystyle \left(\vphantom{\begin{array}{rrrr}
{\sf x}_{{\sf i}{\sf p}\,{\s...
...\\
0 & 0 & 0 & {\sf x}_{{\sf i}{\sf q}\,{\sf j}{\sf q}}
\end{array}}\right.$$\displaystyle \begin{array}{rrrr}
{\sf x}_{{\sf i}{\sf p}\,{\sf j}{\sf p}}& 0 ...
...f p}}& 0\\
0 & 0 & 0 & {\sf x}_{{\sf i}{\sf q}\,{\sf j}{\sf q}}
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{rrrr}
{\sf x}_{{\sf i}{\sf p}\,{\s...
...\\
0 & 0 & 0 & {\sf x}_{{\sf i}{\sf q}\,{\sf j}{\sf q}}
\end{array}}\right)$  $\displaystyle \approx$  $\displaystyle \sf x$ $\displaystyle \cal {U}$  (10)

The 4 x 4 diagonal matrix $ \sf M$ represents multiplicative interferometer-based effects.

$\displaystyle \sf M_{{\sf i}{\sf j}}^{}$  =  $\displaystyle \left(\vphantom{\begin{array}{rrrr}
{\sf m}_{{\sf i}{\sf p}\,{\s...
...\\
0 & 0 & 0 & {\sf m}_{{\sf i}{\sf q}\,{\sf j}{\sf q}}
\end{array}}\right.$$\displaystyle \begin{array}{rrrr}
{\sf m}_{{\sf i}{\sf p}\,{\sf j}{\sf p}}& 0 ...
...f p}}& 0\\
0 & 0 & 0 & {\sf m}_{{\sf i}{\sf q}\,{\sf j}{\sf q}}
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{rrrr}
{\sf m}_{{\sf i}{\sf p}\,{\s...
...\\
0 & 0 & 0 & {\sf m}_{{\sf i}{\sf q}\,{\sf j}{\sf q}}
\end{array}}\right)$  $\displaystyle \approx$  $\displaystyle \cal {U}$ (11)

The 4-element vector $ \vec{A}_{{\sf i}{\sf j}}^{}$ represents additive interferometer-based effects. Examples are receiver noise, and correlator offsets.

$\displaystyle \vec{A}_{{\sf i}{\sf j}}$  =  $\displaystyle \left(\vphantom{\begin{array}{c}
{\sf a}_{{\sf i}{\sf p}\,{\sf j...
...f j}{\sf p}}\\
{\sf a}_{{\sf i}{\sf q}\,{\sf j}{\sf q}}
\end{array}}\right.$$\displaystyle \begin{array}{c}
{\sf a}_{{\sf i}{\sf p}\,{\sf j}{\sf p}}\\
{...
... q}\,{\sf j}{\sf p}}\\
{\sf a}_{{\sf i}{\sf q}\,{\sf j}{\sf q}}
\end{array}$ $\displaystyle \left.\vphantom{\begin{array}{c}
{\sf a}_{{\sf i}{\sf p}\,{\sf j...
...f j}{\sf p}}\\
{\sf a}_{{\sf i}{\sf q}\,{\sf j}{\sf q}}
\end{array}}\right)$  $\displaystyle \approx$  $\displaystyle \vec{0}\,$ (12)

In some cases, interferometer-based effects can be calibrated, e.g. when they appear to be constant in time. It will be interesting to see how many of them will disappear as a result of better modelling with the Measurement Equation. In any case, it is desirable that the cause of interferometer-based effects is properly understood (simulation!).


next up previous contents
Next: POLARISATION COORDINATES Up: The MEASUREMENT EQUATION of a generic radio telescope Previous: THE M.E. FOR A SINGLE POINT SOURCE   Contents
Please send questions or comments about AIPS++ to aips2-request@nrao.edu.
Copyright © 1995-2000 Associated Universities Inc., Washington, D.C.

Return to AIPS++ Home Page
2006-10-15